• Title/Summary/Keyword: recognition-rate

Search Result 2,809, Processing Time 0.03 seconds

The Basic Study on making biphone for Korean Speech Recognition (한국어 음성 인식용 biphone 구성을 위한 기초 연구)

  • Hwang YoungSoo;Song Minsuck
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.99-102
    • /
    • 2000
  • In the case of making large vocabulary speech recognition system, it is better to use the segment than the syllable or the word as the recognition unit. In this paper, we study on the basis of making biphone for Korean speech recognition. For experiments, we use the speech toolkit of OGI in U.S.A. The result shows that the recognition rate of the case in which the diphthong is established as a single unit is superior to that of the case in which the diphthong Is established as two units, i.e. a glide plus a vowel. And also, the recognition rate of the case in which the biphone is used as the recognition unit is better than that of the case in which the mono-phoneme is used.

  • PDF

Isolated Word Recognition Algorithm Using Lexicon and Multi-layer Perceptron (단어사전과 다층 퍼셉트론을 이용한 고립단어 인식 알고리듬)

  • 이기희;임인칠
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.8
    • /
    • pp.1110-1118
    • /
    • 1995
  • Over the past few years, a wide variety of techniques have been developed which make a reliable recognition of speech signal. Multi-layer perceptron(MLP) which has excellent pattern recognition properties is one of the most versatile networks in the area of speech recognition. This paper describes an automatic speech recognition system which use both MLP and lexicon. In this system., the recognition is performed by a network search algorithm which matches words in lexicon to MLP output scores. We also suggest a recognition algorithm which incorperat durational information of each phone, whose performance is comparable to that of conventional continuous HMM(CHMM). Performance of the system is evaluated on the database of 26 vocabulary size from 9 speakers. The experimental results show that the proposed algorithm achieves error rate of 7.3% which is 5.3% lower rate than 12.6% of CHMM.

  • PDF

Telephone Digit Speech Recognition using Discriminant Learning (Discriminant 학습을 이용한 전화 숫자음 인식)

  • 한문성;최완수;권현직
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.37 no.3
    • /
    • pp.16-20
    • /
    • 2000
  • Most of speech recognition systems are using Hidden Markov Model based on statistical modelling frequently. In Korean isolated telephone digit speech recognition, high recognition rate is gained by using HMM if many training data are given. But in Korean continuous telephone digit speech recognition, HMM has some limitations for similar telephone digits. In this paper we suggest a way to overcome some limitations of HMM by using discriminant learning based on minimal classification error criterion in Korean continuous telephone digit speech recognition. The experimental results show our method has high recognition rate for similar telephone digits.

  • PDF

Effects of fractional fourier transform of facial images in face recognition using eigenfeatures (고유특징을 이용한 얼굴인식에 있어서 얼굴영상에 대한 분수차 Fourier 변환의 효과)

  • 심영미;장주석
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.35C no.8
    • /
    • pp.60-67
    • /
    • 1998
  • We studied the effects of fractional fourier transform in face recognition, in which only the amplitude spectra of transformed facial images were used.We used two recently developed face recognition methods, the most effective feature (MEF) method (i.e., eigenface method) and most discriminating feature (MDF) method, and the effects of th etransform for th etwo methods were consistent. We confirmed that the recognition rate by the use of MDF method is better than that consistent. We confirmed that the recognition rate by the use of MDF method is better than that by MEF regardless of the order to transform, these methods provided slightly better results when the order was 1 than for any other order values. Only when the order was close to 1, the recognition rates were robust to the shift of the input images, and the trend that the recognition rates decreased as the input size varied was independent of the order. From these results, we fond that it is most advantageous to use the amplitude spectra of the conventional fourier transform whose order is 1.

  • PDF

Person Recognition Using Gait and Face Features on Thermal Images (열 영상에서의 걸음걸이와 얼굴 특징을 이용한 개인 인식)

  • Kim, Sa-Mun;Lee, Dae-Jong;Lee, Ho-Hyun;Chun, Myung-Geun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.65 no.2
    • /
    • pp.130-135
    • /
    • 2016
  • Gait recognition has advantage of non-contact type recognition. But It has disadvantage of low recognition rate when the pedestrian silhouette is changed due to bag or coat. In this paper, we proposed new method using combination of gait energy image feature and thermal face image feature. First, we extracted a face image which has optimal focusing value using human body rate and Tenengrad algorithm. Second step, we extracted features from gait energy image and thermal face image using linear discriminant analysis. Third, calculate euclidean distance between train data and test data, and optimize weights using genetic algorithm. Finally, we compute classification using nearest neighbor classification algorithm. So the proposed method shows a better result than the conventional method.

A Study on Speaker Recognition Using MFCC Parameter Space (파마메터 공간을 이용한 화자인식에 관한 연구)

  • Lee Yong-woo;Lim dong-Chol;Lee Haing Sea
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.57-60
    • /
    • 2001
  • This paper reports on speaker-Recognition of context independence-speaker recognition in the field of the speech recognition. It is important to select the parameter reflecting the characteristic of each single person because speaker-recognition is to identify who speaks in the database. We used Mel Frequency Cesptrum Coefficient and Vector Quantization to identify in this paper. Specially, it considered to find characteristic-vector of the speaker in different from known method; this paper used the characteristic-vector which is selected in MFCC Parameter Space. Also, this paper compared the recognition rate according to size of codebook from this database and the time needed for operation with the existing one. The results is more improved $3\sim4\%$ for recognition rate than established Vector Quantization Algorithm.

  • PDF

Study on gesture recognition based on IIDTW algorithm

  • Tian, Pei;Chen, Guozhen;Li, Nianfeng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.12
    • /
    • pp.6063-6079
    • /
    • 2019
  • When the length of sampling data sequence is too large, the method of gesture recognition based on traditional Dynamic Time Warping (DTW) algorithm will lead to too long calculation time, and the accuracy of recognition result is not high.Support vector machine (SVM) has some shortcomings in precision, Edit Distance on Real Sequences(EDR) algorithm does not guarantee that noise suppression will not suppress effective data.A new method based on Improved Interpolation Dynamic Time Warping (IIDTW)algorithm is proposed to improve the efficiency of gesture recognition and the accuracy of gesture recognition. The results show that the computational efficiency of IIDTW algorithm is more than twice that of SVM-DTW algorithm, the error acceptance rate is FAR reduced by 0.01%, and the error rejection rate FRR is reduced by 0.5%.Gesture recognition based on IIDTW algorithm can achieve better recognition status. If it is applied to unlock mobile phone, it is expected to become a new generation of unlock mode.

A Study on the Recognition System of the Il-Pa Stenographic Character Images using EBP Algorithm

  • Kim, Sang-Keun;Park, Gwi-Tae
    • KIEE International Transaction on Systems and Control
    • /
    • v.12D no.1
    • /
    • pp.27-32
    • /
    • 2002
  • In this paper, we would study the applicability of neural networks to the recognition process of Korean stenographic character image, applying the classification function, which is the greatest merit of those of neural networks applied to the various parts so far, to the stenographic character recognition, relatively simple classification work. Korean stenographic recognition algorithms, which recognize the characters by using some methods, have a quantitative problem that despite the simplicity of the structure, a lot of basic characters are impossible to classify into a type. They also have qualitative one that It Is not easy to classify characters fur the delicacy of the character farms. Even though this is the result of experiment under the limited environment of the basic characters, this shows the possibility that the stenographic characters can be recolonized effectively by neural network system. In this system, we got 90.86% recognition rate as an average.

  • PDF

A Computer Vision-Based Banknote Recognition System for the Blind with an Accuracy of 98% on Smartphone Videos

  • Sanchez, Gustavo Adrian Ruiz
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.6
    • /
    • pp.67-72
    • /
    • 2019
  • This paper proposes a computer vision-based banknote recognition system intended to assist the blind. This system is robust and fast in recognizing banknotes on videos recorded with a smartphone on real-life scenarios. To reduce the computation time and enable a robust recognition in cluttered environments, this study segments the banknote candidate area from the background utilizing a technique called Pixel-Based Adaptive Segmenter (PBAS). The Speeded-Up Robust Features (SURF) interest point detector is used, and SURF feature vectors are computed only when sufficient interest points are found. The proposed algorithm achieves a recognition accuracy of 98%, a 100% true recognition rate and a 0% false recognition rate. Although Korean banknotes are used as a working example, the proposed system can be applied to recognize other countries' banknotes.

Human Face Recognition Based on improved CNN Model with Multi-layers

  • Zhang, Ruyang;Lee, Eung-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.5
    • /
    • pp.701-708
    • /
    • 2021
  • As one of the most widely used technology in the world right now, Face recognition has already received widespread attention by all the researcher and institutes. It has been used in many fields such as safety protection, surveillance system, crime control and even in our ordinary life such as home security and so on. This technology with today's technology has advantages such as high connectivity and real time transformation. But we still need to improve its recognition rate, reaction time and also reduce impact of different environmental status to the whole system. So in this paper we proposed a face recognition system model with improved CNN which combining the characteristics of flat network and residual network, integrated learning, simplify network structure and enhance portability and also improve the recognition accuracy. We also used AR and ORL database to do the experiment and result shows higher recognition rate, efficiency and robustness for different image conditions.