• Title/Summary/Keyword: recognition-rate

Search Result 2,809, Processing Time 0.03 seconds

ART1 Algorithm by Using Enhanced Similarity Test and Dynamical Vigilance Threshold (개선된 유사성 측정 방법과 동적인 경계 변수를 이용한 ART1 알고리즘)

  • 문정욱;김광백
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.6
    • /
    • pp.1318-1324
    • /
    • 2003
  • There are two problems in the conventional ART1 algorithm. One is in similarity testing method of the conventional ART1 between input patterns and stored patterns. The other is that vigilance threshold of conventional ART1 influences the number of clusters and the rate of recognition. In this paper, new similarity testing method and dynamical vigilance threshold method are proposed to solve these problems. The former is similarity test method using the rate of norm of exclusive-NOR between input patterns and stored patterns and the rate of nodes have equivalence value, and the latter method dynamically controls vigilance threshold to similarity using fuzzy operations and the sum operation of Yager. To check the performance of new methods, we used 26 alphabet characters and nosed characters. In experiment results, the proposed methods are better than the conventional methods in ART1, because the proposed methods are less sensitive than the conventional methods for initial vigilance and the recognition rate of the proposed methods is higher than that of the conventional methods.

A Novel Eyelashes Removal Method for Improving Iris Data Preservation Rate (홍채영역에서의 홍채정보 보존율 향상을 위한 새로운 속눈썹 제거 방법)

  • Kim, Seong-Hoon;Han, Gi-Tae
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.3 no.10
    • /
    • pp.429-440
    • /
    • 2014
  • The iris recognition is a biometrics technology to extract and code an unique iris feature from human eye image. Also, it includes the technology to compare with other's various iris stored in the system. On the other hand, eyelashes in iris image are a external factor to affect to recognition rate of iris. If eyelashes are not removed exactly from iris area, there are two false recognitions that recognize eyelashes to iris features or iris features to eyelashes. Eventually, these false recognitions bring out a lot of loss in iris informations. In this paper, in order to solve that problems, we removed eyelashes by gabor filter that using for analysis of frequency feature and improve preservation rate of iris informations. By novel method to extract various features on iris area using angle, frequency, and gaussian parameter on gabor filter that is one of the filters for analysing frequency feature for an image, we could remove accurately eyelashes with various lengths and shapes. As the result, proposed method represents that improve about 4% than previous methods using GMM or histogram analysis in iris preservation rate.

Particle Swarm Optimization Using Adaptive Boundary Correction for Human Activity Recognition

  • Kwon, Yongjin;Heo, Seonguk;Kang, Kyuchang;Bae, Changseok
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.6
    • /
    • pp.2070-2086
    • /
    • 2014
  • As a kind of personal lifelog data, activity data have been considered as one of the most compelling information to understand the user's habits and to calibrate diagnoses. In this paper, we proposed a robust algorithm to sampling rates for human activity recognition, which identifies a user's activity using accelerations from a triaxial accelerometer in a smartphone. Although a high sampling rate is required for high accuracy, it is not desirable for actual smartphone usage, battery consumption, or storage occupancy. Activity recognitions with well-known algorithms, including MLP, C4.5, or SVM, suffer from a loss of accuracy when a sampling rate of accelerometers decreases. Thus, we start from particle swarm optimization (PSO), which has relatively better tolerance to declines in sampling rates, and we propose PSO with an adaptive boundary correction (ABC) approach. PSO with ABC is tolerant of various sampling rate in that it identifies all data by adjusting the classification boundaries of each activity. The experimental results show that PSO with ABC has better tolerance to changes of sampling rates of an accelerometer than PSO without ABC and other methods. In particular, PSO with ABC is 6%, 25%, and 35% better than PSO without ABC for sitting, standing, and walking, respectively, at a sampling period of 32 seconds. PSO with ABC is the only algorithm that guarantees at least 80% accuracy for every activity at a sampling period of smaller than or equal to 8 seconds.

Design and Implementation of a Real-Time Lipreading System Using PCA & HMM (PCA와 HMM을 이용한 실시간 립리딩 시스템의 설계 및 구현)

  • Lee chi-geun;Lee eun-suk;Jung sung-tae;Lee sang-seol
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.11
    • /
    • pp.1597-1609
    • /
    • 2004
  • A lot of lipreading system has been proposed to compensate the rate of speech recognition dropped in a noisy environment. Previous lipreading systems work on some specific conditions such as artificial lighting and predefined background color. In this paper, we propose a real-time lipreading system which allows the motion of a speaker and relaxes the restriction on the condition for color and lighting. The proposed system extracts face and lip region from input video sequence captured with a common PC camera and essential visual information in real-time. It recognizes utterance words by using the visual information in real-time. It uses the hue histogram model to extract face and lip region. It uses mean shift algorithm to track the face of a moving speaker. It uses PCA(Principal Component Analysis) to extract the visual information for learning and testing. Also, it uses HMM(Hidden Markov Model) as a recognition algorithm. The experimental results show that our system could get the recognition rate of 90% in case of speaker dependent lipreading and increase the rate of speech recognition up to 40~85% according to the noise level when it is combined with audio speech recognition.

  • PDF

A Semi-Noniterative VQ Design Algorithm for Text Dependent Speaker Recognition (문맥종속 화자인식을 위한 준비반복 벡터 양자기 설계 알고리즘)

  • Lim, Dong-Chul;Lee, Haing-Sei
    • The KIPS Transactions:PartB
    • /
    • v.10B no.1
    • /
    • pp.67-72
    • /
    • 2003
  • In this paper, we study the enhancement of VQ (Vector Quantization) design for text dependent speaker recognition. In a concrete way, we present the non-Iterative method which makes a vector quantization codebook and this method Is nut Iterative learning so that the computational complexity is epochally reduced. The proposed semi-noniterative VQ design method contrasts with the existing design method which uses the iterative learning algorithm for every training speaker. The characteristics of a semi-noniterative VQ design is as follows. First, the proposed method performs the iterative learning only for the reference speaker, but the existing method performs the iterative learning for every speaker. Second, the quantization region of the non-reference speaker is equivalent for a quantization region of the reference speaker. And the quantization point of the non-reference speaker is the optimal point for the statistical distribution of the non-reference speaker In the numerical experiment, we use the 12th met-cepstrum feature vectors of 20 speakers and compare it with the existing method, changing the codebook size from 2 to 32. The recognition rate of the proposed method is 100% for suitable codebook size and adequate training data. It is equal to the recognition rate of the existing method. Therefore the proposed semi-noniterative VQ design method is, reducing computational complexity and maintaining the recognition rate, new alternative proposal.

3D Image Processing for Recognition and Size Estimation of the Fruit of Plum(Japanese Apricot) (3D 영상을 활용한 매실 인식 및 크기 추정)

  • Jang, Eun-Chae;Park, Seong-Jin;Park, Woo-Jun;Bae, Yeonghwan;Kim, Hyuck-Joo
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.2
    • /
    • pp.130-139
    • /
    • 2021
  • In this study, size of the fruit of Japanese apricot (plum) was estimated through a plum recognition and size estimation program using 3D images in order to control the Eurytoma maslovskii that causes the most damage to plum in a timely manner. In 2018, night shooting was carried out using a Kinect 2.0 Camera. For night shooting in 2019, a RealSense Depth Camera D415 was used. Based on the acquired images, a plum recognition and estimation program consisting of four stages of image preprocessing, sizeable plum extraction, RGB and depth image matching and plum size estimation was implemented using MATLAB R2018a. The results obtained by running the program on 10 images produced an average plum recognition error rate of 61.9%, an average plum recognition error rate of 0.5% and an average size measurement error rate of 3.6%. The continued development of these plum recognition and size estimation programs is expected to enable accurate fruit size monitoring in the future and the development of timely control systems for Eurytoma maslovskii.

Vocabulary Recognition Performance Improvement using a convergence of Bayesian Method for Parameter Estimation and Bhattacharyya Algorithm Model (모수 추정을 위한 베이시안 기법과 바타차랴 알고리즘을 융합한 어휘 인식 성능 향상)

  • Oh, Sang-Yeob
    • Journal of Digital Convergence
    • /
    • v.13 no.10
    • /
    • pp.353-358
    • /
    • 2015
  • The Vocabulary Recognition System made by recognizing the standard vocabulary is seen as a decline of recognition when out of the standard or similar words. In this case, reconstructing the system in order to add or extend a range of vocabulary is a way to solve the problem. This paper propose configured Bhattacharyya algorithm standing by speech recognition learning model using the Bayesian methods which reflect parameter estimation upon the model configuration scalability. It is recognized corrected standard model based on a characteristic of the phoneme using the Bayesian methods for parameter estimation of the phoneme's data and Bhattacharyya algorithm for a similar model. By Bhattacharyya algorithm to configure recognition model evaluates a recognition performance. The result of applying the proposed method is showed a recognition rate of 97.3% and a learning curve of 1.2 seconds.

A Study on the Removal of Unusual Feature Vectors in Speech Recognition (음성인식에서 특이 특징벡터의 제거에 대한 연구)

  • Lee, Chang-Young
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.4
    • /
    • pp.561-567
    • /
    • 2013
  • Some of the feature vectors for speech recognition are rare and unusual. These patterns lead to overfitting for the parameters of the speech recognition system and, as a result, cause structural risks in the system that hinder the good performance in recognition. In this paper, as a method of removing these unusual patterns, we try to exclude vectors whose norms are larger than a specified cutoff value and then train the speech recognition system. The objective of this study is to exclude as many unusual feature vectors under the condition of no significant degradation in the speech recognition error rate. For this purpose, we introduce a cutoff parameter and investigate the resultant effect on the speaker-independent speech recognition of isolated words by using FVQ(Fuzzy Vector Quantization)/HMM(Hidden Markov Model). Experimental results showed that roughly 3%~6% of the feature vectors might be considered as unusual, and therefore be excluded without deteriorating the speech recognition accuracy.

A Study on Character Recognition using Wavelet Transformation and Moment (웨이브릿 변환과 모멘트를 이용한 문자인식에 관한 연구)

  • Cho, Meen-Hwan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.10
    • /
    • pp.49-57
    • /
    • 2010
  • In this thesis, We studied on hand-written character recognition, that characters entered into a digital input device and remove noise and separating character elements using preprocessing. And processed character images has done thinning and 3-level wavelet transform for making normalized image and reducing image data. The structural method among the numerical Hangul recognition methods are suitable for recognition of printed or hand-written characters because it is usefull method deal with distortion. so that method are applied to separating elements and analysing texture. The results show that recognition by analysing texture is easily distinguished with respect to consonants. But hand-written characters are tend to decreasing successful recognition rate for the difficulty of extraction process of the starting point, of interconnection of each elements, of mis-recognition from vanishing at the thinning process, and complexity of character combinations. Some characters associated with the separation process is more complicated and sometime impossible to separating elements. However, analysis texture of the proposed character recognition with the exception of the complex handwritten is aware of the character.

Performance Improvement of Speech Recognition Using Context and Usage Pattern Information (문맥 및 사용 패턴 정보를 이용한 음성인식의 성능 개선)

  • Song, Won-Moon;Kim, Myung-Won
    • The KIPS Transactions:PartB
    • /
    • v.13B no.5 s.108
    • /
    • pp.553-560
    • /
    • 2006
  • Speech recognition has recently been investigated to produce more reliable recognition results in a noisy environment, by integrating diverse sources of information into the result derivation-level or producing new results through post-processing the prior recognition results. In this paper we propose a method which uses the user's usage patterns and the context information in speech command recognition for personal mobile devices to improve the recognition accuracy in a noisy environment. Sequential usage (or speech) patterns prior to the current command spoken are used to adjust the base recognition results. For the context information, we use the relevance between the current function of the device in use and the spoken command. Our experiment results show that the proposed method achieves about 50% of error correction rate over the base recognition system. It demonstrates the feasibility of the proposed method.