• Title/Summary/Keyword: recognition-rate

Search Result 2,809, Processing Time 0.028 seconds

Occlusive Face Recognition using the Selective Subspace Projection Method (선택적 부공간 투영 방법을 사용한 가려진 얼굴 인식)

  • Kim, Young-Gil;Song, Young-Jun;Kim, Dong-Woo;Ahn, Jae-Hyeong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.1
    • /
    • pp.48-52
    • /
    • 2008
  • In this paper, we propose a new selective subspace projection method in order to recognize the occlusive face image effectively. The conventional subspace projection method is project to basis image using a full image of face. The face recognition rate has reduced because the face characteristic is easy to be distorted by occlusion. To overcome this problem, the proposed method first decide to occlusion. If it hasn't an occlusion, we get the feature vectors with total basis projection using the conventional subspace projection method. If it has an occlusion, we get one with partial basis projection. We get better recognition rate than conventional PCA and NMF using AR face database with occlusive face images.

Detection and Recognition of Traffic Lights for Unmanned Autonomous Driving (무인 자율주행을 위한 신호등의 검출과 인식)

  • Kim, Jang-Won
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.6
    • /
    • pp.751-756
    • /
    • 2018
  • This research extracted traffic light from input video, recognized colors of traffic light, and suggested traffic light color recognizing algorithm applicable to manless autonomous vehicle or ITS by distinguishing signs. To extract traffic light, suggested algorithm extracted the outline with CEA(Canny Edge Algorithm), and applied HCT(Hough Circle Transform) to recognize colors of traffic light and improve the accuracy. The suggested method was applied to the video of stream acquired on the road. As a result, excellent rate of traffic light recognition was confirmed. Especially, ROI including traffic light in input video was distinguished and computing time could be reduced. In even area similar to traffic light, circle was not extracted or V value is low in HSV space, so it's failed in candidate area. So, accuracy of recognition rate could be improved.

Improvement of Facial Emotion Recognition Performance through Addition of Geometric Features (기하학적 특징 추가를 통한 얼굴 감정 인식 성능 개선)

  • Hoyoung Jung;Hee-Il Hahn
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.1
    • /
    • pp.155-161
    • /
    • 2024
  • In this paper, we propose a new model by adding landmark information as a feature vector to the existing CNN-based facial emotion classification model. Facial emotion classification research using CNN-based models is being studied in various ways, but the recognition rate is very low. In order to improve the CNN-based models, we propose algorithms that improves facial expression classification accuracy by combining the CNN model with a landmark-based fully connected network obtained by ASM. By including landmarks in the CNN model, the recognition rate was improved by several percent, and experiments confirmed that further improved results could be obtained by adding FACS-based action units to the landmarks.

Recognition of English Calling Cards by Using Projection Method and Enhanced RBE Network

  • Kim, Kwang-Baek
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.4
    • /
    • pp.474-479
    • /
    • 2003
  • In this paper, we proposed the novel method for the recognition of English calling cards by using the projection method and the enhanced RBF (Radial Basis Function) network. The recognition of calling cards consists of the extraction phase of character areas and the recognition phase of extracted characters. In the extraction phase, first of all, noises are removed from the images of calling cards, and the feature areas including character strings are separated from the calling card images by using the horizontal smearing method and the 8-directional contour tracking method. And using the image projection method, the feature areas are split into the areas of individual characters. We also proposed the enhanced RBF network that organizes the middle layer effectively by using the enhanced ART1 neural network adjusting the vigilance threshold dynamically according to the homogeneity between patterns. In the recognition phase, the proposed neural network is applied to recognize individual characters. Our experiment result showed that the proposed recognition algorithm has higher success rate of recognition and faster learning time than the existing neural network based recognition.

Feature Extraction Based on GRFs for Facial Expression Recognition

  • Yoon, Myoong-Young
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.7 no.3
    • /
    • pp.23-31
    • /
    • 2002
  • In this paper we propose a new feature vector for recognition of the facial expression based on Gibbs distributions which are well suited for representing the spatial continuity. The extracted feature vectors are invariant under translation rotation, and scale of an facial expression imege. The Algorithm for recognition of a facial expression contains two parts: the extraction of feature vector and the recognition process. The extraction of feature vector are comprised of modified 2-D conditional moments based on estimated Gibbs distribution for an facial image. In the facial expression recognition phase, we use discrete left-right HMM which is widely used in pattern recognition. In order to evaluate the performance of the proposed scheme, experiments for recognition of four universal expression (anger, fear, happiness, surprise) was conducted with facial image sequences on Workstation. Experiment results reveal that the proposed scheme has high recognition rate over 95%.

  • PDF

A Study on Recognition and Attitudes toward the Social Service Activity of Nurses (간호사의 사회봉사활동에 대한 인식과 태도)

  • Song, Ju-Eun;Kim, Yong-Soon;Lee, Sun-Kyoung
    • The Journal of Korean Academic Society of Nursing Education
    • /
    • v.13 no.2
    • /
    • pp.220-228
    • /
    • 2007
  • Purpose: The purpose of this study was to investigate recognition and attitudes about social service activity(SSA) of nurses. Method: This was a descriptive study. The data was collected from July 15 to 31, 2002 by using a self-report questionnaire consisting of general characteristics(15items), recognition(24items) and attitude(23items) about SSA. The questionnaire was sent to 711 nurses of 38 hospitals in the Gyounggi province area, and 664 questionnaires were returned. The answer rate was 93.4%. The data was analyzed by the SPSS 12.0 Win program. Result: Seventy-one percent of nurses had a SSA experience during university, but only 14.2% nurses participate in SSA now. The mean score of recognition of SSA was 3.58($\pm$0.45), and that of attitude was 3.70($\pm$0.42). The relationship between recognition and attitude had a positive correlation(r=.398, p=.000), the higher the score of recognition, the higher the score of attitude. Conclusion: From these results, to improve nurses' participation in SSA, research to investigate the barrier factors of SSA participation in spite of the high level of recognition and attitude is needed. Programs for nurses to participate in SSA and systemic management should be set up.

  • PDF

The Hangeul image's recognition and restoration based on Neural Network and Memory Theory (신경회로망과 기억이론에 기반한 한글영상 인식과 복원)

  • Jang, Jae-Hyuk;Park, Joong-Yang;Park, Jae-Heung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.4 s.36
    • /
    • pp.17-27
    • /
    • 2005
  • In this study, it proposes the neural network system for character recognition and restoration. Proposes system composed by recognition part and restoration part. In the recognition part. it proposes model of effective pattern recognition to improve ART Neural Network's performance by restricting the unnecessary top-down frame generation and transition. Also the location feature extraction algorithm which applies with Hangeul's structural feature can apply the recognition. In the restoration part, it composes model of inputted image's restoration by Hopfield neural network. We make part experiments to check system's performance, respectively. As a result of experiment, we see improve of recognition rate and possibility of restoration.

  • PDF

An Implementation Method of the Character Recognizer for the Sorting Rate Improvement of an Automatic Postal Envelope Sorting Machine (우편물 자동구분기의 구분율 향상을 위한 문자인식기의 구현 방법)

  • Lim, Kil-Taek;Jeong, Seon-Hwa;Jang, Seung-Ick;Kim, Ho-Yon
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.12 no.4
    • /
    • pp.15-24
    • /
    • 2007
  • The recognition of postal address images is indispensable for the automatic sorting of postal envelopes. The process of the address image recognition is composed of three steps-address image preprocessing, character recognition, address interpretation. The extracted character images from the preprocessing step are forwarded to the character recognition step, in which multiple candidate characters with reliability scores are obtained for each character image extracted. aracters with reliability scores are obtained for each character image extracted. Utilizing those character candidates with scores, we obtain the final valid address for the input envelope image through the address interpretation step. The envelope sorting rate depends on the performance of all three steps, among which character recognition step could be said to be very important. The good character recognizer would be the one which could produce valid candidates with very reliable scores to help the address interpretation step go easy. In this paper, we propose the method of generating character candidates with reliable recognition scores. We utilize the existing MLP(multilayered perceptrons) neural network of the address recognition system in the current automatic postal envelope sorters, as the classifier for the each image from the preprocessing step. The MLP is well known to be one of the best classifiers in terms of processing speed and recognition rate. The false alarm problem, however, might be occurred in recognition results, which made the address interpretation hard. To make address interpretation easy and improve the envelope sorting rate, we propose promising methods to reestimate the recognition score (confidence) of the existing MLP classifier: the generation method of the statistical recognition properties of the classifier and the method of the combination of the MLP and the subspace classifier which roles as a reestimator of the confidence. To confirm the superiority of the proposed method, we have used the character images of the real postal envelopes from the sorters in the post office. The experimental results show that the proposed method produces high reliability in terms of error and rejection for individual characters and non-characters.

  • PDF

An Implementation of Taekwondo Action Recognition System using Multiple Sensing (멀티플 센싱을 이용한 태권도 동작 인식 시스템 구현)

  • Lee, Byong Kwon
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.2
    • /
    • pp.436-442
    • /
    • 2016
  • There are a lot of sports when you left the victory and the defeat of the match the referee subjective judgment. In particular, TaeKwonDo pumse How accurate a given action? Is important. Objectively evaluate the subjective opinion of victory and defeat in a sporting event and the technology to keep as evidence is required. This study was implemented a system for recognizing Taekwondo executed through the number of motion recognition device. Step Sensor also used to detect a user's location. This study evaluated the rate matching the standard gesture data and the motion data. Through multiple gesture recognition equipment was more accurate assessment of the Taekwondo action.

Speaker Detection and Recognition for a Welfare Robot

  • Sugisaka, Masanori;Fan, Xinjian
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.835-838
    • /
    • 2003
  • Computer vision and natural-language dialogue play an important role in friendly human-machine interfaces for service robots. In this paper we describe an integrated face detection and face recognition system for a welfare robot, which has also been combined with the robot's speech interface. Our approach to face detection is to combine neural network (NN) and genetic algorithm (GA): ANN serves as a face filter while GA is used to search the image efficiently. When the face is detected, embedded Hidden Markov Model (EMM) is used to determine its identity. A real-time system has been created by combining the face detection and recognition techniques. When motivated by the speaker's voice commands, it takes an image from the camera, finds the face inside the image and recognizes it. Experiments on an indoor environment with complex backgrounds showed that a recognition rate of more than 88% can be achieved.

  • PDF