Kim, Young-Gil;Song, Young-Jun;Kim, Dong-Woo;Ahn, Jae-Hyeong
Journal of the Korean Institute of Intelligent Systems
/
v.18
no.1
/
pp.48-52
/
2008
In this paper, we propose a new selective subspace projection method in order to recognize the occlusive face image effectively. The conventional subspace projection method is project to basis image using a full image of face. The face recognition rate has reduced because the face characteristic is easy to be distorted by occlusion. To overcome this problem, the proposed method first decide to occlusion. If it hasn't an occlusion, we get the feature vectors with total basis projection using the conventional subspace projection method. If it has an occlusion, we get one with partial basis projection. We get better recognition rate than conventional PCA and NMF using AR face database with occlusive face images.
The Journal of Korea Institute of Information, Electronics, and Communication Technology
/
v.11
no.6
/
pp.751-756
/
2018
This research extracted traffic light from input video, recognized colors of traffic light, and suggested traffic light color recognizing algorithm applicable to manless autonomous vehicle or ITS by distinguishing signs. To extract traffic light, suggested algorithm extracted the outline with CEA(Canny Edge Algorithm), and applied HCT(Hough Circle Transform) to recognize colors of traffic light and improve the accuracy. The suggested method was applied to the video of stream acquired on the road. As a result, excellent rate of traffic light recognition was confirmed. Especially, ROI including traffic light in input video was distinguished and computing time could be reduced. In even area similar to traffic light, circle was not extracted or V value is low in HSV space, so it's failed in candidate area. So, accuracy of recognition rate could be improved.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.24
no.1
/
pp.155-161
/
2024
In this paper, we propose a new model by adding landmark information as a feature vector to the existing CNN-based facial emotion classification model. Facial emotion classification research using CNN-based models is being studied in various ways, but the recognition rate is very low. In order to improve the CNN-based models, we propose algorithms that improves facial expression classification accuracy by combining the CNN model with a landmark-based fully connected network obtained by ASM. By including landmarks in the CNN model, the recognition rate was improved by several percent, and experiments confirmed that further improved results could be obtained by adding FACS-based action units to the landmarks.
Journal of the Korean Institute of Intelligent Systems
/
v.13
no.4
/
pp.474-479
/
2003
In this paper, we proposed the novel method for the recognition of English calling cards by using the projection method and the enhanced RBF (Radial Basis Function) network. The recognition of calling cards consists of the extraction phase of character areas and the recognition phase of extracted characters. In the extraction phase, first of all, noises are removed from the images of calling cards, and the feature areas including character strings are separated from the calling card images by using the horizontal smearing method and the 8-directional contour tracking method. And using the image projection method, the feature areas are split into the areas of individual characters. We also proposed the enhanced RBF network that organizes the middle layer effectively by using the enhanced ART1 neural network adjusting the vigilance threshold dynamically according to the homogeneity between patterns. In the recognition phase, the proposed neural network is applied to recognize individual characters. Our experiment result showed that the proposed recognition algorithm has higher success rate of recognition and faster learning time than the existing neural network based recognition.
Journal of Korea Society of Industrial Information Systems
/
v.7
no.3
/
pp.23-31
/
2002
In this paper we propose a new feature vector for recognition of the facial expression based on Gibbs distributions which are well suited for representing the spatial continuity. The extracted feature vectors are invariant under translation rotation, and scale of an facial expression imege. The Algorithm for recognition of a facial expression contains two parts: the extraction of feature vector and the recognition process. The extraction of feature vector are comprised of modified 2-D conditional moments based on estimated Gibbs distribution for an facial image. In the facial expression recognition phase, we use discrete left-right HMM which is widely used in pattern recognition. In order to evaluate the performance of the proposed scheme, experiments for recognition of four universal expression (anger, fear, happiness, surprise) was conducted with facial image sequences on Workstation. Experiment results reveal that the proposed scheme has high recognition rate over 95%.
The Journal of Korean Academic Society of Nursing Education
/
v.13
no.2
/
pp.220-228
/
2007
Purpose: The purpose of this study was to investigate recognition and attitudes about social service activity(SSA) of nurses. Method: This was a descriptive study. The data was collected from July 15 to 31, 2002 by using a self-report questionnaire consisting of general characteristics(15items), recognition(24items) and attitude(23items) about SSA. The questionnaire was sent to 711 nurses of 38 hospitals in the Gyounggi province area, and 664 questionnaires were returned. The answer rate was 93.4%. The data was analyzed by the SPSS 12.0 Win program. Result: Seventy-one percent of nurses had a SSA experience during university, but only 14.2% nurses participate in SSA now. The mean score of recognition of SSA was 3.58($\pm$0.45), and that of attitude was 3.70($\pm$0.42). The relationship between recognition and attitude had a positive correlation(r=.398, p=.000), the higher the score of recognition, the higher the score of attitude. Conclusion: From these results, to improve nurses' participation in SSA, research to investigate the barrier factors of SSA participation in spite of the high level of recognition and attitude is needed. Programs for nurses to participate in SSA and systemic management should be set up.
Journal of the Korea Society of Computer and Information
/
v.10
no.4
s.36
/
pp.17-27
/
2005
In this study, it proposes the neural network system for character recognition and restoration. Proposes system composed by recognition part and restoration part. In the recognition part. it proposes model of effective pattern recognition to improve ART Neural Network's performance by restricting the unnecessary top-down frame generation and transition. Also the location feature extraction algorithm which applies with Hangeul's structural feature can apply the recognition. In the restoration part, it composes model of inputted image's restoration by Hopfield neural network. We make part experiments to check system's performance, respectively. As a result of experiment, we see improve of recognition rate and possibility of restoration.
Journal of Korea Society of Industrial Information Systems
/
v.12
no.4
/
pp.15-24
/
2007
The recognition of postal address images is indispensable for the automatic sorting of postal envelopes. The process of the address image recognition is composed of three steps-address image preprocessing, character recognition, address interpretation. The extracted character images from the preprocessing step are forwarded to the character recognition step, in which multiple candidate characters with reliability scores are obtained for each character image extracted. aracters with reliability scores are obtained for each character image extracted. Utilizing those character candidates with scores, we obtain the final valid address for the input envelope image through the address interpretation step. The envelope sorting rate depends on the performance of all three steps, among which character recognition step could be said to be very important. The good character recognizer would be the one which could produce valid candidates with very reliable scores to help the address interpretation step go easy. In this paper, we propose the method of generating character candidates with reliable recognition scores. We utilize the existing MLP(multilayered perceptrons) neural network of the address recognition system in the current automatic postal envelope sorters, as the classifier for the each image from the preprocessing step. The MLP is well known to be one of the best classifiers in terms of processing speed and recognition rate. The false alarm problem, however, might be occurred in recognition results, which made the address interpretation hard. To make address interpretation easy and improve the envelope sorting rate, we propose promising methods to reestimate the recognition score (confidence) of the existing MLP classifier: the generation method of the statistical recognition properties of the classifier and the method of the combination of the MLP and the subspace classifier which roles as a reestimator of the confidence. To confirm the superiority of the proposed method, we have used the character images of the real postal envelopes from the sorters in the post office. The experimental results show that the proposed method produces high reliability in terms of error and rejection for individual characters and non-characters.
There are a lot of sports when you left the victory and the defeat of the match the referee subjective judgment. In particular, TaeKwonDo pumse How accurate a given action? Is important. Objectively evaluate the subjective opinion of victory and defeat in a sporting event and the technology to keep as evidence is required. This study was implemented a system for recognizing Taekwondo executed through the number of motion recognition device. Step Sensor also used to detect a user's location. This study evaluated the rate matching the standard gesture data and the motion data. Through multiple gesture recognition equipment was more accurate assessment of the Taekwondo action.
Computer vision and natural-language dialogue play an important role in friendly human-machine interfaces for service robots. In this paper we describe an integrated face detection and face recognition system for a welfare robot, which has also been combined with the robot's speech interface. Our approach to face detection is to combine neural network (NN) and genetic algorithm (GA): ANN serves as a face filter while GA is used to search the image efficiently. When the face is detected, embedded Hidden Markov Model (EMM) is used to determine its identity. A real-time system has been created by combining the face detection and recognition techniques. When motivated by the speaker's voice commands, it takes an image from the camera, finds the face inside the image and recognizes it. Experiments on an indoor environment with complex backgrounds showed that a recognition rate of more than 88% can be achieved.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.