• Title/Summary/Keyword: recognition-rate

Search Result 2,809, Processing Time 0.035 seconds

Augmentation of Hidden Markov Chain for Complex Sequential Data in Context

  • Sin, Bong-Kee
    • Journal of Multimedia Information System
    • /
    • v.8 no.1
    • /
    • pp.31-34
    • /
    • 2021
  • The classical HMM is defined by a parameter triple �� = (��, A, B), where each parameter represents a collection of probability distributions: initial state, state transition and output distributions in order. This paper proposes a new stationary parameter e = (e1, e2, …, eN) where N is the number of states and et = P(|xt = i, y) for describing how an input pattern y ends in state xt = i at time t followed by nothing. It is often said that all is well that ends well. We argue here that all should end well. The paper sets the framework for the theory and presents an efficient inference and training algorithms based on dynamic programming and expectation-maximization. The proposed model is applicable to analyzing any sequential data with two or more finite segmental patterns are concatenated, each forming a context to its neighbors. Experiments on online Hangul handwriting characters have proven the effect of the proposed augmentation in terms of highly intuitive segmentation as well as recognition performance and 13.2% error rate reduction.

Systems Engineering-based Manipulator System Development for Pipetting Automation (피펫팅 자동화를 위한 시스템엔지니어링 기반 매니퓰레이터 시스템 개발)

  • Su Ho, Kim;Jeong Hyun, Han;Ki Tae, Nam;Jun Kyeong, Kim;Seong Hun, Hong
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.18 no.2
    • /
    • pp.126-139
    • /
    • 2022
  • The need for synthetic automation is increasing in preparation for a gradual decrease in laboratory research manpower due to low birth rate and aging. In this study, the existing laboratory synthesis method is analyzed based on the systems engineering technique. Then, it led to the derivation of the system requirements for a fixed-based robot manipulator capable of recognition, decision and control. The robot is equipped with replaceable modular end-effectors and designed depending on the purpose and process of the synthesis. The robot with an end-effector was implemented as PoC(Proof-of-Concept), and the functions for pipetting automation was verified.

Dynamic Adaptive Binarization Method Using Fuzzy Trapezoidal Type and Image Stepwise Segmentation (퍼지의 사다리꼴 타입과 영상 단계적 분할을 이용한 동적 적응적 이진화 방법)

  • Lee, Ho Chang
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.5
    • /
    • pp.670-675
    • /
    • 2022
  • This study proposes an improved binarization method to improve image recognition rate. The research goal is to minimize the information loss that occurs during the binarization process, and to transform the object of the original image that cannot be determined through the transformation process into an image that can be judged. The proposed method uses a stepwise segmentation method of an image and divides blocks using prime numbers. Also, within one block, a trapezoidal type of fuzzy is applied. The fuzzy trapezoid is binarized by dividing the brightness histogram area into three parts according to the degree of membership. As a result of the experiment, information loss was minimized in general images. In addition, it was found that the converted binarized image expressed the object better than the original image in the special image in which the brightness region was tilted to one side.

A Basic Study on the Instance Segmentation with Surveillance Cameras at Construction Sties using Deep Learning based Computer Vision (건설 현장 CCTV 영상에서 딥러닝을 이용한 사물 인식 기초 연구)

  • Kang, Kyung-Su;Cho, Young-Woon;Ryu, Han-Guk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.11a
    • /
    • pp.55-56
    • /
    • 2020
  • The construction industry has the highest occupational fatality and injury rates related to accidents of any industry. Accordingly, safety managers closely monitor to prevent accidents in real-time by installing surveillance cameras at construction sites. However, due to human cognitive ability limitations, it is impossible to monitor many videos simultaneously, and the fatigue of the person monitoring surveillance cameras is also very high. Thus, to help safety managers monitor work and reduce the occupational accident rate, a study on object recognition in construction sites was conducted through surveillance cameras. In this study, we applied to the instance segmentation to identify the classification and location of objects and extract the size and shape of objects in construction sites. This research considers ways in which deep learning-based computer vision technology can be applied to safety management on a construction site.

  • PDF

Implementation of Handwriting Number Recognition using Convolutional Neural Network (콘볼류션 신경망을 이용한 손글씨 숫자 인식 구현)

  • Park, Tae-Ju;Song, Teuk-Seob
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.561-562
    • /
    • 2021
  • CNN (Convolutional Neural Network) is widely used to recognize various images. In this presentation, a single digit handwritten by humans was recognized by applying the CNN technique of deep learning. The deep learning network consists of a convolutional layer, a pooling layer, and a platen layer, and finally, we set an optimization method, learning rate and loss functions.

  • PDF

A Study of Data Augmentation and Auto Speech Recognition for the Elderly (한국어 노인 음성 데이터 증강 및 인식 연구 )

  • Keon Hee Kim;Seoyoon Park;Hansaem Kim
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.56-60
    • /
    • 2023
  • 기존의 음성인식은 청장년 층에 초점이 맞추어져 있었으나, 최근 고령화가 가속되면서 노인 음성에 대한 연구 필요성이 증대되고 있다. 그러나 노인 음성 데이터셋은 청장년 음성 데이터셋에 비해서는 아직까지 충분히 확보되지 못하고 있다. 본 연구에서는 부족한 노인 음성 데이터셋 확보에 기여하고자 희소한 노인 데이터셋을 증강할 수 있는 방법론에 대해 연구하였다. 이를 위해 노인 음성 특징(feature)을 분석하였으며, '주파수'와 '발화 속도' 특징을 일반 성인 음성에 합성하여 데이터를 증강하였다. 이후 Whisper small 모델을 파인 튜닝한 뒤 노인 음성에 대한 CER(Character Error Rate)를 구하였고, 기존 노인 데이터셋에 증강한 데이터셋을 함께 사용하는 것이 가장 효과적임을 밝혀내었다.

  • PDF

PASS: A Parallel Speech Understanding System

  • Chung, Sang-Hwa
    • Journal of Electrical Engineering and information Science
    • /
    • v.1 no.1
    • /
    • pp.1-9
    • /
    • 1996
  • A key issue in spoken language processing has become the integration of speech understanding and natural language processing(NLP). This paper presents a parallel computational model for the integration of speech and NLP. The model adopts a hierarchically-structured knowledge base and memory-based parsing techniques. Processing is carried out by passing multiple markers in parallel through the knowledge base. Speech-specific problems such as insertion, deletion, and substitution have been analyzed and their parallel solutions are provided. The complete system has been implemented on the Semantic Network Array Processor(SNAP) and is operational. Results show an 80% sentence recognition rate for the Air Traffic Control domain. Moreover, a 15-fold speed-up can be obtained over an identical sequential implementation with an increasing speed advantage as the size of the knowledge base grows.

  • PDF

Development and Utilization of Speech Recognition Service for Ship Radio Communication (선박무선통신 음성인식 서비스 개발 및 활용)

  • Kwang-Il Kim;Sang-Lok Yoo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2023.11a
    • /
    • pp.236-237
    • /
    • 2023
  • 선박무선통신장비는 선박이 항해하는데 필요한 안전정보, 선박교통 모니터링 및 관제, 입·출항 정보를 교환하기 위한 필수 장비이므로 선박항해사는 무선통신 내용을 항상 주의 깊게 청취해야 함. 본 연구에서는 선박의 실제 음성 교신데이터 500시간 데이터를 수집 및 학습하고, Wav2Vec 및 Whisper 모델을 활용하여 한글 및 영어(해사영어) 음성인식 모델을 개발하고 실용화를 수행하였다. 음성인식 모델의 성능은 CER(Character Error Rate) 기준 94.5%로 향후 선박 운항 관련 댜양한 분야에 적용이 가능할 것으로 사료된다.

  • PDF

Detection of Traditional Costumes: A Computer Vision Approach

  • Marwa Chacha Andrea;Mi Jin Noh;Choong Kwon Lee
    • Smart Media Journal
    • /
    • v.12 no.11
    • /
    • pp.125-133
    • /
    • 2023
  • Traditional attire has assumed a pivotal role within the contemporary fashion industry. The objective of this study is to construct a computer vision model tailored to the recognition of traditional costumes originating from five distinct countries, namely India, Korea, Japan, Tanzania, and Vietnam. Leveraging a dataset comprising 1,608 images, we proceeded to train the cutting-edge computer vision model YOLOv8. The model yielded an impressive overall mean average precision (MAP) of 96%. Notably, the Indian sari exhibited a remarkable MAP of 99%, the Tanzanian kitenge 98%, the Japanese kimono 92%, the Korean hanbok 89%, and the Vietnamese ao dai 83%. Furthermore, the model demonstrated a commendable overall box precision score of 94.7% and a recall rate of 84.3%. Within the realm of the fashion industry, this model possesses considerable utility for trend projection and the facilitation of personalized recommendation systems.

Stem Cell and Exosome Therapy in Pulmonary Hypertension

  • Seyeon Oh;Ji-Hye Jung;Kyung-Jin Ahn;Albert Youngwoo Jang;Kyunghee Byun;Phillip C. Yang;Wook-Jin Chung
    • Korean Circulation Journal
    • /
    • v.52 no.2
    • /
    • pp.110-122
    • /
    • 2022
  • Pulmonary hypertension is a rare and progressive illness with a devastating prognosis. Promising research efforts have advanced the understanding and recognition of the pathobiology of pulmonary hypertension. Despite remarkable achievements in terms of improving the survival rate, reducing disease progression, and enhancing quality of life, pulmonary arterial hypertension (PAH) is not completely curable. Therefore, an effective treatment strategy is still needed. Recently, many studies of the underlying molecular mechanisms and technological developments have led to new approaches and paradigms for PAH treatment. Management based on stem cells and related paracrine effects, epigenetic drugs and gene therapies has yielded prospective results for PAH treatment in preclinical research. Further trials are ongoing to optimize these important insights into clinical circumstances.