JOURNAL OF ELECTRICAL ENGINEERING AND INFORMATION SCIENCE, VOL. 1, No. 1, 1996. 1

PASS: A Parallel Speech Understanaing
System

Sang-Hwa Chung

Abstract

A key issue in spoken language processing has become the integration of speech understanding and natural language
processing (NLP). This paper presents a parallel computational model for the integration of speech and NLP. The model adopts
a hierarchically-structured knowledge base and memory-based parsing techniques. Processing is carried out by passing multiple
markers in parallel through the knowledge base. Speech-specific problems such as insertion, deletion, and substitution have been
analyzed and their parallel solutions are provided. The complete system has been implemented on the Semantic Network Array
Processor(SNAP) and is operational. Results show an 80% sentence recognition rate for the Air Traffic Control domain.
Moreover, a 15-fold speed-up can be obtained over an identical sequential implementation with an increasing speed advantage

as the size of the knowledge base grows.

I. Introduction

Despite several decades of research activity, spoken language
processing still remains a difficult field. The ultimate goal of
speech research is to create an intelligent assistant, who listens
to what a user tells it and then carries out the instructions. An
apparently simpler goal is the listening typewriter, a device
which merely transcribes whatever it hears with only a few
seconds delay. The listening typewriter seems simple, but in
reality the process of transcription requires almost complete
understanding as well. Today, we are still quite far from these
ultimate goals, but progress is being made.

A key issue in spoken language processing has become the
integration of speech understanding and natural language
processing (NLP). Their effective integration offers higher
potential recognition rates than recognition using word-level
knowledge alone. Without higher level knowledge, error rates
for even the best currently available systems are fairly high. For
example, CMU’s Sphinx system [6] is considered to be one of
the best speaker-independent continuous-speech recognition
systems today. But even the Sphinx system has a word
recognition accuracy of only 70.6% for speaker-independent,
continuous-speech recognition with a vocabulary of 1000 words,
when recognizing individual words in sentences without using
syntax or semantic information [6].

Clearly, we need some forms of high-level knowledge to
better understand continuous speech. The integration of speech

Manuscript received February 22, 1995; accepted June 23, 1995.
The anthor is with Department of Computer Engineering, Pusan National

Univ., Pusan, Korea.

and NLP rtesolves multiple ambiguous hypotheses using
syntactic, semantic and contextual knowledge sources. Since this
requires sizable computation involving multiple levels of
knowledge sources, speed performance degrades on realistic
knowledge bases suitable for broader, complex domains.

The high volume of computational requirement of integrated
speech understanding algorithms calls for new approaches to
parallel processing. Recent work on parallel parsing is relatively
limited. Moreover, most of the works relate to written language.
Huang and Guthrie [5] proposed a parallel model for natural
language parsing based on a combined syntax and semantics
approach. Waltz and Pollack [9] investigated parallel
approaches under paradigms related to the connectionist model.
Giachin and Rullent [4] developed a parallel parser called
SYNAPSIS for spoken natural language using a
Transputer-based distributed architecture. They used a case
frame-based parsing scheme and reported a sentence recognition
accuracy of about 80% from continuously-uttered sentences, on
average 7 words long, with a dictionary of 1000 words.
However, SYNAPSIS was not implemented on a real parallel
system. The analysis of one sentence by a sequential version of
SYNAPSIS took on the average 40 seconds on a SYMBOLICS.

In this paper, we describe how the scalability problem can be
addressed in the integrated PArallel Speech understanding
System called PASS. A memory-based parsing model and
parallel marker-passing schemes form the underlying philosophy
of the system. We show how to handle the major speech-specific
problems such as insertion, deletion, and substitution using
tightly-coupled iterations between low-level phoneme sequences
and higher-level concepts. Beyond simply recognizing speech

and converting it into text, PASS employs the underlying
meaning representation througa parallel speech understanding.
We describe an operational implementation of our integrated
approach and analyze its perfornance on a real parallel machine.

Fig. 1. The PASS environment.

II. Integrated Speech and Natural
Language Processing

The objective of PASS is to provide a parallel system which
integrates speech and high-levzl NLP to improve processing
speed and tractable domain siz:.

1. System Overview

As shown in Fig. 1, PASS contains the natural language
understanding (NLU) module, the speech understanding (SU)
module and the knowledge base. The inputs to PASS are
provided by the Phonetic Engine [7] manufactured by Speech
Systems Incorporated (SSI). The Phonetic Engine provides a
stream of input phonetic codes for processing. It performs signal
processing on speaker-independent continuous speech in real-
time.

CS Hierorehy ¢

1] BOEGOOE

Gs: Tiger-616

first last

FS: nex ix next @‘
. phirst plast \7

OBROVOEBEED| COOBE POEEROEDD
prext

Fig. 2. Hierarchical knowledge base including phoneme
sequence level - ATC domain.

The input codes provided by the Phonetic Engine are
evaluated in the SU module t> find the matching phoneme
sequences. The predictions provided by the NLU module allow

S.H.CHUNG : PASS: A PARALLEL SPEECH UNDERSTANDING SYSTEM

the SU module to handle multiple hypotheses efficiently. The
NLU module guides the scope of the search space. Word
candidates activated by the SU module are further evaluated in
the NLU module to construct meaning representations and
generate a sentence output. The predictions and activations are
performed in parallel by markers throughout the knowledge
base.

2. Hierarchical Knowledge Base

We use hierarchically organized knowledge bases to support
close interaction between several levels of knowledge sources. A
concept sequence (CS) is a basic building block in me-
mory-based parsing. Each CS represents the underlying meaning
of a possible phrase or sentence within a domain. In each CS,
concept sequence element (CSE) nodes are connected by first,
next and last links. Similarly, in each phoneme sequence (PS),
phoneme sequence element (PSE) nodes are connected by
pfirst, p-next and p-last links to form words. More general CSs
are placed at higher levels, and more specific CSs are placed at
lower levels. This type of memory network is called a CS
hierarchy. Phoneme sequences, which are attached to the
corresponding concept nodes, reside at the lowest level of the
concept sequence hierarchy. :

Fig. 2 shows a part of a hierarchical knowledge base from the
Air Traffic Control (ATC) domain developed for training air
traffic controllers [8). We have adapted the ATC domain to
support a vocabulary of approximately 200 words using a
hierarchical semantic network of approximately 1400 nodes. In
Fig. 2, tiger-616 is a CS root node and tiger, six and sixteen
are the corresponding CS element nodes. Phoneme sequences are
attached to these CS element nodes as shown in Fig. 2.

A layered structure makes it possible to process knowledge
from the phonetic level to the contextual level by representing
knowledge using a layered memory network. After phonemes
are processed and word hypotheses are formed, linguistic
analysis can be performed based on the syntactic, semantic and
contextual constraints embedded in the knowledge base.

3.-The Alignment Scoring Model

It is difficult to correctly align input phonetic codes with
target phoneme sequences because the phonetic codes contain
the segmentation problems such as insertion, deletion and su-
bstitution. The code/phoneme statistics collected by SSI provide
the necessary information for the alignment process. '

@)~~~ @)@
AN

o) [[[@]

Fig. 3. A possible alignment between input codes and a
target transcription.

JOURNAL OF ELECTRICAL ENGINEERING AND INFORMATION SCIENCE, VOL. 1, No. 1, 1998. 3

An initial task to be performed in speech understanding is
finding the best comespondence of input codes to phoneme
sequences. To evaluate each match, a codebook is used, which
was derived from automatically labelled speech data, collected
from several speakers. The codes represent acoustic events
having some ambiguity with respect to phonemes. That is, two
or more successive phonemes may be time-aligned with a single
code, and two or more successive codes may be time-aligned
with a single phoneme. Our system accepts 1644 different
phonetic codes generated by the Phonetic Engine, which map to
49 phonemes. Each input code is assigned by an integer between
0 and 1643.

The above can be described in terms of an alignment scoring
model[1]. A sequence S consists of separate input codes ¢(7)
and is denoted by S = {«) :i=0,..., N }. To find the
sentence which produced S, the memory network is searched for
a sentence transcription T={ p(;j»:j=0,..., M } consisting of
phonemes, each labeled »(;). The correspondence of Sto T
‘which maximizes the alignment score is chosen as output.

A subsequence of codes { () :i = 4,..., inlsdy < 1, CAN
be time-aligned with a single. phoneme p(j). Conversely, a
subsequence of phonemes { 4() : j =j,,..., ubs Jo < ja. can
be time aligned with a single code, <(i). A possible alignment is
illustrated in Fig. 3. Here (0) is aligned with #(0); p(1) is
aligned with [«(1), c(2)}; «(3) is aligned with{ »(2), 5(3), p(d) };
(4) (the last phoneme of the previous subsequence) is also
aligned with (4);c(4) (the last code of the previous
subsequence) is also aligned with #(5); and finally, p(5) is also
aligned with «(5).

X(93, b) = scorel

X(93. g) = scare2
1

Y(93, 2) = score3

b) Y (code, Cphoneme)
L e
OJCIOORE R
7

©) Z (phoneme, {code)

Fig. 4. An example of applying X, Y and Z matrices.

4. X, Y, and Z Matrices

To compute the alignment score between S and T, score
values are computed for the time-aligned subsequences of S and
T. The model accounts for: 1) each alignment betweena code

and a phoneme, 2) the number of successive phonemes aligned

with the same code and 3) the number of successive codes

aligned with the same phoneme. To express the score of an
alignment, three matrices are required:

O X(code, phoneme) - each element «x is a score to align code
i with phoneme j. The X matrix is generally known as a
confusion matrix.

o Y(code, #phoneme) - each element y; is a score to align code
i with number(f) of successive phonemes.

O Z(phoneme, #code) - each element ; is a score to align
phoneme i with number(j) of successive codes.

Fig. 4 shows an example of applying the X, Y and Z
matrices. In Fig. 4-a, the phonetic code 93 is aligned with the
first phonemes of PSs: bar & gull, and other phonemes in the
knowledge base with different X matrix scores. Alignment
examples of applying the Y and Z matrices are shown in Fig.
4-b and c, respectively. ’

For each input code, alignment scores are calculated by
consulting the X, Y and Z matrices, and the score of an entire
utterance is the sum of the scores of the time-aligned
subsequences in the utterance. For example, the score for Fig.
3 is computed as:

Score= { X(c(0), p(0)) + Y((0), 1) +Z(#(0), 1) }
+{X(c(1),) + X(2), (1)) + Y(«(1), 1)
+ Y(e(2),1)+2Z(p(1), 2)} +{ X((3), p(2))
+ X(c(3), p3)) +X(c(3), pd)) + Y(c(3),3)
+ Z((2),)+ Z(p(3), D+ 2(p(4),2) }
+{ X(c(4), o) + X((4), p(B) + Y((4),2)
+ Z(p(5),2)} +{X(c(5), p(B)) + Y((5), 1)}

Each set of brackets indicates a sub-group of possible
alignments. For instance, the first set of brackets indicates an
alignment between (0) and »(0) .

The individual scores for the X, Y and Z matrices are lo-
garithms of probabilities and/or probability ratios [1]. They are
scaled (by choosing an appropriate base of the logarithm) into
the range of an 8-bit integer between -128 and 127. The scores
for Y and Z matrices are offset with the single alignment scores,
such as ¥(«(),1) and Z(p(;),1), to avoid unnecessary compu-
tations during the scoring process.

Although we have shown the final alignment scores in the
above example, actual computations include some intermediate
scores. For example, in Fig. 3, suppose we have already
processed the phonetic codes (0) and (1), and p(1) aligned
with a single code with the score of Z(p(1),1). When the next
code, «2), is accepted, a new alignment is formed with the
score of Z(p(1).2). In this case, to extend the alignment
matching a single code to 2 successive codes, we only need to
add z(p(1),2) instead of also subtracting Z(p(1),1). This is
possible because the individual scores for Y mnd Z matrices are
already offset.

Insertion, deletion and substitution can be kandled in terms of
the alignment scoring model. Specifically, insetion problems are

handled by the Z matrix; deletion problems are handled by the
Y matrix; substitution problems are handled by the X matrix.

5. The Functional Structure of PASS

The architecture of the integrated memory-based speech
understanding system is shown in Fig. 5. Dark arrows indicate
execution flow and light arrovs show information flow. The SU
module performs: phoneme prediction, phoneme activation, word
boundary detection, insertion control, and deletion control. The
NLU module performs: word' prediction, word activation, mul-
tiple hypotheses resolution, meaning representation construction,
and sentence generation. The: knowledge base containing con-
cept sequences and phoneme sequences is distributed to each
parallel processing element and the scoring information in-
cluding X, Y and Z matrices is in a host or central controller.

sentence outpul

Bor
Detection Control

]
'

'

'

H

Phoneme Deletion E
o '
E

h

)

.

Phoaetic Engine

& speech input
Fig. 5. Modules within FASS.

In principle, the parallel speech understanding algorithm is
based on a combination of top-down prediction and bottom-up
activation in the concept secuence hierarchy. In other words,
top-down prediction decides the candidates to be evaluated next
and bottom-up recognition activates a set of phonemes from a
given phonetic code.

As shown in Fig. 5, a circilar path exists between the NLU
module and the SU module as follows: word prediction —
phoneme prediction — phoneme activation — word boundary
control — word activation -- multiple hypotheses control —
word prediction. The operation starts in the NLU module by
predicting the first words in all concept sequences.

This in tum impacts the przdiction of the first phonemes for
these predicted words. Next, the system accepts a phonetic code
as speech input, and via X, Y, Z matrices all the relevant
phonemes are activated. Tte candidates of predicted and
activated phonemes trigger firther phoneme predictions. This
process repeats until new word hypotheses are formed. This
coincides with the activation of corresponding words, and the

8.H.CHUNG : PASS: A PARALLEL SPEECH UNDERSTANDING SYSTEWM

process is moved to the NLU medule. Here, through a process

similar to the one at the SU level, only the coincidence of
predicted and activated words triggers further word predictions.
When a word gets both prediction and activation, a concept
instance is generated to construct a meaning representation. All
words originally predicted, but not activated, receive cancellation
markers. Afterwards, this cycle repeats.

The repeated top-down prediction and bottom-up activation
are performed on this circular path until all phonetic code inputs
are processed. Once a whole CS is recognized, a CS instance
(CSI) is generated as an interpretation of the speech input, and
stored in the knowledge base. As shown in Fig. 6, a sequence
of input codes are matched against the CS: increase-speed-event
in the CS memory using the above algorithm, and the CS
instance (CSI): increase-speed-event#3 is dynamically generated
in the CSI memory as a result of parsing. The CS and CSI are
connected by a CS instance link. From the CSI, the sentence
output: “Tiger six sixteen, increase speed to ome five zero
knots™* is generated, as shown in Fig. 6.

The actual predictions and activations are performed by
propagating markers in parallel through the knowledge base. The
processing of speech input on PASS requires the creation and
movement of markers on the memory network. The actual
implementation required about 20 different types of markers,
including both fat-markers and simple bit-markers. Fat-markers
carry scoring information and move around the memory network
by marker propagation operations, while bit-markers only
represent certain characteristics of nodes and are not propagated.
Some fat-markers performing important functions are:

Output Sentence: “Tiger six sixteen, increase speed to one five zero knots™

CSI
Memory

Memory

input Phonetic Codes: 240 721 1282 1368 1327 93 967 1619 1056 345 631 §57 909 239 576 834 1244 505 122 611
972 1002 297 1005 343 238 763 976 850 628 197 444 569 258 461 1025 1040 1575 1356 354

Fig. 6. An example of CSI generated as a result of
parsing.

O P-Markers - indicate the next possible nodes (or phonemes)
to be activated in the concept sequence (or phoneme
sequence). They are initially placed on the first nodes of

JOURNAL OF ELECTRICAL ENGINEERING AND INFORMATION SCIENCE, VOL. 1, No. 1, 1996. 5

concept sequences and phoneme sequences, and move
through the next (or pnext) link.

O A-Markers - indicate activations of nodes. They propagate
upward through the concept sequence hierarchy.

o I-Markers - indicate instantiations of activated nodes.
Activated concept nodes are finally identified by I-Markers.

© C-Markers - indicate cancellations of activated nodes.
Because of multiple hypotheses, some I-Markers may be
cancelled or invalidated later as their scores become inferior.

6. Marker-passing Solutions for Speech-specific Problems

During the phoneme sequence recoghition process, the
insertion and deletion problems occur in almost all words. It is
critical to handle these problems properly for successful
recognition of phonemes. The alignment scoring model provides
the necessary information to solve the problems by the X,Y, and
Z matrices.

ACID#6
firsg,
last last
next, next
tiger six sixteen Y o8l heavy
SHOEE)
first las
P P pnext
t t< A’ y £ g< e T J§ deletion

721 1364 |132 93 16]% l:ascqucnccof
phonetic codes

insertion

Fig. 7. An Example of Handling the Insertion and
Deletion Problems.

However, it is not easy to simultaneously align a sequence of
phonetic codes containing such problems with multiple phoneme
sequence targets in the memory network, because the multiple
targets should be evaluated at the same time, and the next
phoneme activations cannot be foreseen while the current
phonetic code is being processed. Therefore, when we advance
the prediction markers based on the current scoring information,
we should consider how to recover from bad expectations in
some phoneme sequence candidates, without affecting good
expectations in other candidates.

An example describing these problems is shown in Fig. 7,
where only a part of the concept sequence hierarchy for the
ATC domain is depicted. In this figune, we show the time
alignment between the subsequence of phonetic codes: 721 1282
1368 1327 93 967 1619 1066, ard the phoneme sequence for the
word tiger: t t< A’ ygg<er

As an example, let us assume that we have processed the
subsequence of codes: 721 1282 1368 1327 93. The remaining
codes can be handled as follows (dual prediction markers, P(-1)
and P(0), are used to keep the previously used P-Marker as well

as the current P-Marker):

1. Code 967 is now accepted from the Phonetic Engine. By

consulting the X matrix in the central controller, phoneme
e is activated. The scoring process is as follows:
Score(P(0)) = Previous_Score(P(0)) + Score(A), where
Score(A) = X(967, &) + Y(967,1) + Z(e, 1). Then, P(0) is pro-
pagated to phoneme r from phoneme e through the pnext
link. Phoneme e also keeps P(-1) to prepare against a
possible insertion.

2. When code 1619 arrives, phoneme e is activated again,
instead of phoneme r. That is, an insertion exists. The
insertion handling routine calculates the score of
theA-Marker: Score(A)=X(1619,¢) + Y(1619,1) + Z(e>2)
where the previous Z(e,1) need not be cancelled because
scores in the Y, Z matrices only contain offset values to
avoid unnecessary computations. After adding the score of
A to P(-1), a new P(0Q) is propagated again to phoneme r.

3. When code 1066 arrives, phoneme e and phoneme r are
activated together. That is, both an insertion and a deletion
occur at the same time. By this, we can assume that there
exist no more insertions to phoneme e. Now, the score of
the A-Marker is calculated as: Score(A) = X(1066,e) +
Y(1066,1) + Z(e,3). Again, a new P(0) adding the score of
A is propagated to phoneme r. Here, a collision between
P(0) and A exists, and the scoring process for phoneme r
begins. Because phoneme r is the last phoneme activated
in the phoneme sequence, an A-Marker propagates upward
through the concept sequence hierarchy, and finally a new
P(0) arrives at the first phoneme of the phoneme sequence
for concept six.

Because multiple hypotheses are evaluated at the same time,
recognition processes similar to the one described above are
performed in parallel throughout the memory network. Sub-
stitution problems are not shown in Fig. 7. When a substitution
occurs, the score of the X Matrix for the substituted code-
phoneme pair will be low or even below a threshold. Thus,
when a substitution problem occurs in a phoneme sequence
candidate, the score of the candidate is decreased. This candidate
may be rejected when other hypotheses get better scores in any
decision point.

7. Multiple Hypotheses Resolution

Multiple hypotheses cannot be completely resolved with the
information available at the phoneme sequence level. The SU
module activates multiple competing words, or even the same
words repeatedly when insertion problems exist. When
A-Markers are propagated up through the concept sequence
hierarchy at a word boundary, several candidates may exist at
any merging point. A merging point exists when a concept node
contains multiple incoming last links, isa links, ornext links. A
merging point also exists when a concept node has multiple
plast links coming from multiple phoneme sequences re-

presenting various pronunciations of the concept node.

In PASS, a scheme for score-based multiple hypotheses
resolution is performed in parallel using marker-passing. When
multiple candidates arrive at z. merging point, the concept ncde
in the merging point might have been either already activated
from the evaluations of the previous input codes or first visited
this time. To get the best candidate, the scores carried by the
candidates’ A-Markers are compared. If the concept node was
activated previously, the score of the I-Marker is also compared
with the scores of the A-Makers. The candidates with lower
scores are cancelled by propagiting C-Markers down through the
concept sequence hierarchy. As a result, the concept node gets
a new I-Marker containing thz highest score.

Fig. 8. An Example of Multiple Hypotheses Resolution.

An example for the multipls hypotheses resolution is shown
in Fig. 8. The concept node aircraft id was previously activated
by the hypothesis: tiger six tem, and the score of the [-Marker
for the node is 425. Because this hypothesis was not a correct
one, the activation score was poor. Although tiger six ten is
apparently different from tiger six sixteem, it is still possible to
activate this hypothesis with a low score. Basically, any
phoneme with the X Matrix score greater than a certain
threshold can be activated from an input code regardless of its
meaning. So, it is critical to se: the threshold properly to prevent
unnecessary activations withoat losing any meaningful infor-
mation.

When a néew hypothesis: tiger six sixteen arrivés at the node
aircraft id with the score of the A-Marker, 741, the previous
hypothesis is rejected because of its lower score. C-Markers are
simultaneously propagated down through all possible links in the
concept sequence hierarchy except the link to the newly selected
hypothesis. When C-Markers collide with I-Markers during the
propagation, the I-Markers ar: cancelled. To protect partially
evaluated hypotheses, a C-Marker in each node stops its
propagation when the node does not contain an I-Marker. For
example, thai air six seventeen is still in the middle of
evaluation as shown, while later, turning out to be the
hypothesis with the highest score. Thus, the I-Markers on the
nodes thai, air and six need 10 be retained.

After resolving multiple hypotheses, P-Markers are propagated
to the concept nodes such as .ncrease, climb, and turn through
next links. From these nodes, P-Markers are further propagated

S.H.CHUNG : PASS: A PARALLEL SPEECH UNDERSTANDING SYSTEM

down to the first phonemes of corresponding phoneme se-
quences. The activation, cancellation, and prediction operations
are performed simultaneously for all possible hypotheses.

III. Execution Results

The PASS integrated speech/NLP algorithm has been
implemented on the SNAP-1 parallel machine[3] and is ope-
rational. Currently, the Air Traffic Control domain is being used
and a larger Radiology domain is in development. We describe
below the current system configuration and its performance.

Host ¢ompu!er Spzech Froat-end
Host Vo Phonetic codes
SUN 4/280 |3 Phoneti i i
VME bus7 I RS232 netic Engine | <3— Speech input
Y, {
SNAP Controller : PASS Progrom
!
P SN‘:P Amay : Knowledge Bose
SNAP-1 Prototype

Fig. 9. The PASS system implemented on the SNAP-1
parallel machine.

1. SNAP-1 Parallel Processing Platform

Fig. 9 shows the actual implementation of the PASS system
on the SNAP-1 parallel machine. The combined system consists
of the SNAP-1 parallel machine, the Phonetic Engine, and a
SUN 4/280 (host computer). The speech front-end and the SUN
host are connected to the SNAP controller via an RS-232 and
a VME bus, respectively.

SNAP-1 is a parallel array processor designed for semantic
network processing with a reasoning mechanism based on
marker-passing. The SNAP-1 architecture is based on an a
multiprocessing array and a dual-processor array controller. The
array stores a semantic network of .up to 32K nodes and 320K
links. The processor array consists of 144 Texas Instruments
TMS320C30, DSP microprocessors. The array is organized as 32
tightly-coupled clusters of 4 to 5 Processing Elements (PEs)
each!). Each cluster manages 1024 semantic network nodes.

Speaker Speaker Sentence/
begins finishes meaning
sentence sentence recognized

e jApullime —————< ~— response lime —e

exccution time

Fig. 10. Definition of execution time and response Time.

1) Presently, 16 clusters are implement€d in the full 5 PE
configuration while the remaining 16 clusters have 4 PEs each,
totaling 144 PEs.

JOURNAL OF ELECTRICAL ENGINEERING AND INFORMATION SCIENCE, VOL. 1, No. 1, 1996. 7

The central controller interfaces the processor array with a
SUN4/280 host where application programs are written and
compiled. Within the SNAP-C environment, high-level ope-
rations and libraries are provided for marker-passing. The
parallel operations are initiated through a global bus from the
controller which begins each propagation cycle by broadcasting
marker instructions to the array. However, most of the work is
performed locally though the propagation of markers at nodes
within the cluster. Thus, several instructions and multiple
propagations can be performed simultaneously.

2. Recognition Accuracy

We have analyzed the execution of PASS for the ATC
domain on the SNAP-1 platform and a uniprocessor. The
essential elements of the domain, including basic concept
sequences and phoneme sequences occupy 1,357 semantic
network nodes with 5,834 links. Results are reported for a 16
cluster configuration which was the maximum available at the
time. The controller clock speed was 32 MHz while the array
processors operated at 25 MHz.

We tested 60 different continuously-uttered sentences. Each
sentence contained about 11 words and was spoken by four
different speakers. An 80% sentence recognition rate was
achieved within the domain for these untrained speakers.

3. Response Time and Scale-up

We have measured response time as more knowledge is used.
The knowledge base size was increased by inserting additional
concept and phoneme sequences. For each configuration, results
for program running time are reported according to the
definitions in Fig. 10. Execution time indicates the time elapsed
from when the speaker first begins the sentence. Since the
speech codes are generated by the Phonetic Engine as the
sentence is spoken, PASS begins execution immediately when
the first code is generated. This means that the input and
processing are overlapped. Thus, the response time observed by
the user is only the time required to construct meaning
representation and generate an output sentence after the last
input is received.

Fig. 11 shows response times for various number of semantic
network nodes. With a 16-cluster SNAP-1 configuration ope-
rating at 25 MHz, response time for the basic ATC domain was
3.7 seconds with input time of about 5 seconds. Thus, near
real-time performance can be obtained, while extracting meaning
representation and generating a sentence output from untrained
continuous-speech input when using a knowledge base of this
size. When more nodes were added, response time increased
linearly with a small slope. Response time ranged from 3.7
seconds for 1.4K nodes to 23 seconds for 9K nodes.

The identical algorithm is executed on a single TMS320C30
processor at 25 MHz. Response time also increases linearly, but
the user must wait over 40 seconds for a response, even when
using the basic ATC domain. While both response times

increase linearly, a 15-fold speed-up is obtained from the
. parallel implementation for 9K nodes.

KB Size Response Time (sec)

(nodes) SNAP Uniprocessor
1400 37 414
1600 43 50.2
1800 48 61.4
2200 59 753
2400 62 82.7
2800 74 95.6
32bo 83 108.7
3600 94 125.2
4000 103 142.7
5000 128 158.2
5500 140 2024
6500 16.6 2393
7500 19.1 2739
9000 23.0 3396

Fig. 11. Response time.

The rate at which processing time increases is primarily
influenced by the critical path of marker propagation. The
critical path is determined by the structure of the knowledge
base as it grows. Consider an efficient parallel implementation -
for a knowledge base which grows hierarchically. The critical
path corresponds to the maximum depth from the root to the
leaves of the hierarchy. Thus performance approaching loga-
rithmic time can be obtained up to the number of processors
available.

T T T T T T T

—6—— Toul
251 ind b
—==%=—== SNAP instructions -

- <]
w o
T v

Execution time [sec)
)
T

OO0 O =y O DG e — GO o — -,
1000 2000 3000 4000 5000 6000 7000 8000 9000
Knowledge base size [nodes]

Fig. 12. Execution time.

However, a linguistic knowledge representation typically
introduces new nodes at predetermined levels for the concept
and phoneme sequences. Therefore, although the knowledge base
is organized hierarchically, it maintains a relatively fixed depth
while its breadth increases. The length of the critical path is
roughly fixed, and performance approaching constant time can
be obtained in terms of knowledge base size on a parallel
machine with sufficient resources. For increases in knowledge
base size which are large relative to the processing resources

available, execution time increases at a constant rate so near
linear performance will occur an an efficient parallel machine.
In PASS, the addition of new nodes does not significantly
change the knowledge base depth. Since meaningful increments
in knowledge base size exceed the number of processors in the
SNAP-1 array, linear performance is obtained.

4. Components of Execution Time

To understand the execution characteristics of the algorithm,
we also studied the componen:s of execution time required to
process a typical target sentence on SNAP-1 as shown in Fig.
12. The dashed line is for all 26 types of SNAP instructions,
including marker-propagation. The dotted line shows that the
majority of processing time is spent in the propagation phase.
Only a small portion of the code is serial and cannot be
executed as SNAP array instructions. The serial portion is about
10% for small knowledge bases and less than 4% percent for
larger knowledge bases. Since the reasoning mechanisms are
based on marker-propagation, the serial processing time does not
depend heavily on the size of the knowledge base.

6000 T T T y T T T T

g § &8

Propagation [instructions]
:

g

3000 L N 2 n N N s '
1000 2000 3600° 4000 5000 6000 Fo00 £0s0 9000
Knowledg : boee size [eodes]

Fig. 13. Increase in number of propagate instructions.

However, as shown in Fig. 13, there is some increase in the
total number of propagations recuired. This occurs because more
irrelevant candidates become activated, which must be removed
by propagating cancel markers during the multiple hypotheses
- resolution phase. Although la:ge knowledge bases will add
candidates which are not relevant, the number of propagations is
not expected to exceed much more than 5000. Most other
operations remained relatively constant with processing do-
minated by marker set/clear (12,000 instructions)and boolean
marker operations (11,000 instructions).

Array Size R“Pﬁg
{clusters) - -(I;l::;
4 122
. 8.2
8 6.3
10 52
12 44
14 38
16 37

Fig. 14. Response time vs. aTay size (KB size: 1.4K).

S.H.CHUNG : PASS: A PARALLEL SPEECH UNDERSTANDING SYSTEM

5. Processor Speed-up

Fig. 14 shows the effect of varying the number of processors
while the size of the knowledge base is held constant. Since the
capacity of a single cluster is limited to 1024 nodes, the basic
ATC domain was used with 4 or more clusters. For each
configuration, response time was measured for different sen-
tences and the average processing time was calculated. In
general, the performance improves as the number of processors
is increased. The improvement levels off when a large number
of clusters are used. This is mainly because each cluster is only
partially occupied and no longer fully utilized.

KB Size Resp E i

(nodes) Speedup Speedup
1400 12.8 59
1600 19 6.1
1800 122 6.6
2200 12.1 70
2400 12.8 17
2800 12.7 82
3200 13.1 8.8
3600 13.5 93
4000 136 9.6
5000 142 10.6
5500 14.8 1.2
6500 149 11.7
7500 155 124
9000 16.0 13.2

Fig. 15. Speed-up with increasing knowledge base size.

However, if a proportionally larger knowledge base is used,
then it is possible to take advantage of the parallelism, and
higher speedups can be obtained. This effect is shown in Fig.
15 for a 16-cluster configuration. The speedup over a single
TMS320C30 for response time and execution time increase as
the knowledge base grows.

To further increase the speed performance we are developing
a semantically-driven allocation scheme which assigns nodes
from one concept sequence to the same processing element. This
distributes the available parallelism evenly while reducing
communication overhead associated with marker-propagation. In
addition to improving the propagation phase, it is possible to
optimize the non-propagation SNAP instructions and further
reduce the total execution time. Additionally, the full 32 cluster
configuration should provide a significant performance impro-
vement for large knowledge bases.

IV, Conclusion

We have developed an integrated speech understanding al-
gorithm based on memory-based parsing and parallel marker-
passing schemes. We have provided a parallel solution to sp-

JOURNAL OF ELECTRICAL ENGINEERING AND INFORMATION SCIENCE, VOL. 1, No. 1, 1886. 9

eech-specific problems such as insertion, deletion, and substi-
tution. In our approach, meaning representations constructed as
a result of memory-baséd parsing can be applied not only to
generate an output sentence but also to provide information for
applications such as high-level inferencing and speech tran-
slation. The experimental results demonstrate the benefits of the
parallel computational model for the integration of speech and
NLP.

References

[1] M.T. Anikst and DJ. Trawick, “Training Continuous
Speech Linguistic Decoding Parameters as a Single-Layer
Perceptron,” Proceedings of International Joint Conference
on Neural Networks, Vol. 2, pp. 237-240, 1990.

[2] S. Chung and D.I. Moldovan, “Modeling Semantic Net-
works on The Connection Machine,” Journal of Parallel
and Distributed Computing, Vol 17 No. 1 & 2, pp.
152-163, February 1993.

[3] R. DeMara and D.I. Moldovan, “The SNAP-1 Parallel Al

/.,f N .

(4]

(5]

(6]

(7]

(8]

(9]

Prototype,” IEEE Transactions on Parallel and Distributed
Systems, Vol. 4 No. 8, pp. 841-854, 1693.

E.P. Giachin and C. Rullent, “A Parallel Parser for Spoken
Natural Language,” Proceedings of IJCAI, pp. 1537-1542,
1989.

X. Huang and L. Guthrie, “Parsing in Parallel,” Pro-
ceedings of COLING-86, pp. 140-145, 1986.

K.F. Lee, “Large-Vocabulary Speaker-Independent Con-
tinuous Speech Recognition: The Sphinx System,” Tech-
nical Report CMU-CS-88-148, Department of Computer
Science, Carnegie-Mellon University, 1988.

W.S. Meisel, M.P. Fortunato, and W.D. Michalek, “A
Phonetically-Based Speech Recognition System,” Speech
Technology, pp. 44-48, Apr/May 1989.

L. Olorenshaw, “Air Traffic Control Training Using
Continuous Speech Recognition and the ATCOACH,” Pro-
ceedings of Speech Tech '90, pp. 376-379, 1990.

D.L. Waltz and J.B. Pollack, “Massively Parallel Parsing: A
Strong Interactive Model of Natural Language Inter-
pretation,” Cognitive Science 9, pp. 51-74, 1985.

7 Sang-Hwa Chung was bom in Pusan,
Korea. He received the B.S. degree in
electrical engineering from Seoul Na-
tional University in 1985, the M.S. de-
gree in computer engineering from Iowa
State University in 1988, and the Ph.D.
degree in computer engineering from the

44 LA . University of Southern California in
1993, From 1993 to 1994, he was an Assistant Professor in
Electrical and Computer Engineering Department at the
University of Central Florida. He is presently a Full-time
Instructor in the Department of Computer Engineering at
Pusan National University. His research Interests include
parallel algorithms and systems for artificial intelligence, infor-
mation retrieval, speech understanding, and natural language

processing.

