• Title/Summary/Keyword: recognition-rate

Search Result 2,809, Processing Time 0.036 seconds

Recognition of Handwritten Numerals using Hybrid Features And Combined Classifier (복합 특징과 결합 인식기에 의한 필기체 숫자인식)

  • 박중조;송영기;김경민
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.1
    • /
    • pp.14-22
    • /
    • 2001
  • Off-line handwritten numeral recognition is a very difficult task and hard to achieve high recognition results using a single feature and a single classifier, since handwritten numerals contain many pattern variations which mostly depend upon individual writing styles. In this paper, we propose handwritten numeral recognition system using hybrid features and combined classifier. To improve recognition rate, we select mutually helpful features -directional features, crossing point feature and mesh features- and make throe new hybrid feature sets by using these features. These hybrid feature sets hold the local and global characteristics of input numeral images. And we implement combined classifier by combining three neural network classifiers to achieve high recognition rate, where fuzzy integral is used for multiple network fusion. In order to verify the performance of the proposed recognition system, experiments with the unconstrained handwritten numeral database of Concordia University, Canada were performed. As a result, our method has produced 97.85% of the recognition rate.

  • PDF

Performance Improvement of Continuous Digits Speech Recognition Using the Transformed Successive State Splitting and Demi-syllable Pair (반음절쌍과 변형된 연쇄 상태 분할을 이용한 연속 숫자 음 인식의 성능 향상)

  • Seo Eun-Kyoung;Choi Gab-Keun;Kim Soon-Hyob;Lee Soo-Jeong
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.1
    • /
    • pp.23-32
    • /
    • 2006
  • This paper describes the optimization of a language model and an acoustic model to improve speech recognition using Korean unit digits. Since the model is composed of a finite state network (FSN) with a disyllable, recognition errors of the language model were reduced by analyzing the grammatical features of Korean unit digits. Acoustic models utilize a demisyllable pair to decrease recognition errors caused by inaccurate division of a phone or monosyllable due to short pronunciation time and articulation. We have used the K-means clustering algorithm with the transformed successive state splitting in the feature level for the efficient modelling of feature of the recognition unit. As a result of experiments, 10.5% recognition rate is raised in the case of the proposed language model. The demi-syllable fair with an acoustic model increased 12.5% recognition rate and 1.5% recognition rate is improved in transformed successive state splitting.

  • PDF

A License Plate Recognition Algorithm using Multi-Stage Neural Network for Automobile Black-Box Image (다단계 신경 회로망을 이용한 블랙박스 영상용 차량 번호판 인식 알고리즘)

  • Kim, Jin-young;Heo, Seo-weon;Lim, Jong-tae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.1
    • /
    • pp.40-48
    • /
    • 2018
  • This paper proposes a license-plate recognition algorithm for automobile black-box image which is obtained from the camera moving with the automobile. The algorithm intends to increase the overall recognition-rate of the license-plate by increasing the Korean character recognition-rate using multi-stage neural network for automobile black-box image where there are many movements of the camera and variations of light intensity. The proposed algorithm separately recognizes the vowel and consonant of Korean characters of automobile license-plate. First, the first-stage neural network recognizes the vowels, and the recognized vowels are classified as vertical-vowels('ㅏ','ㅓ') and horizontal-vowels('ㅗ','ㅜ'). Then the consonant is classified by the second-stage neural networks for each vowel group. The simulation for automobile license-plate recognition is performed for the image obtained by a real black-box system, and the simulation results show the proposed algorithm provides the higher recognition-rate than the existing algorithms using a neural network.

Performance Improvement of Continuous Digits Speech Recognition using the Transformed Successive State Splitting and Demi-syllable pair (반음절쌍과 변형된 연쇄 상태 분할을 이용한 연속 숫자음 인식의 성능 향상)

  • Kim Dong-Ok;Park No-Jin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.8
    • /
    • pp.1625-1631
    • /
    • 2005
  • This paper describes an optimization of a language model and an acoustic model that improve the ability of speech recognition with Korean nit digit. Recognition errors of the language model are decreasing by analysis of the grammatical feature of korean unit digits, and then is made up of fsn-node with a disyllable. Acoustic model make use of demi-syllable pair to decrease recognition errors by inaccuracy division of a phone, a syllable because of a monosyllable, a short pronunciation and an articulation. we have used the k-means clustering algorithm with the transformed successive state splining in feature level for the efficient modelling of the feature of recognition unit . As a result of experimentations, $10.5\%$ recognition rate is raised in the case of the proposed language model. The demi-syllable pair with an acoustic model increased $12.5\%$ recognition rate and $1.5\%$ recognition rate is improved in transformed successive state splitting.

An Efficient Quadratic Projection-Based Iris Recognition: Performance Improvements of Iris Recognition Using Dual QML (효율적인 Quadratic Projection 기반 홍채 인식: Dual QML을 적용한 홍채 인식의 성능 개선 방안)

  • Kwon, Taeyean;Noh, Geontae;Jeong, Ik Rae
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.28 no.1
    • /
    • pp.85-93
    • /
    • 2018
  • Biometric user authentications, day after day, propagate more to human life instead of traditional systems which use passwords and ID cards. However, most of these systems have many problems for given biometric information such noisy data, low-quality data, a limitation of recognition rate, and so on. To deal with these problems, I used Dual QML which is non-linear classification for classifying correctly the real-world data and then proposed preprocessing method for increasing recognition rate and performance by segmenting a specific region on an image. The previous published Dual QML used face, palmprint, ear for the experiment. In this paper, I used iris for experiment and then proved excellence of Dual QML at iris recognition. Finally I demonstrated these results (e.g. increasing recognition rate and performance, suitability for iris recognition) through experiments.

CNN-based Building Recognition Method Robust to Image Noises (이미지 잡음에 강인한 CNN 기반 건물 인식 방법)

  • Lee, Hyo-Chan;Park, In-hag;Im, Tae-ho;Moon, Dai-Tchul
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.3
    • /
    • pp.341-348
    • /
    • 2020
  • The ability to extract useful information from an image, such as the human eye, is an interface technology essential for AI computer implementation. The building recognition technology has a lower recognition rate than other image recognition technologies due to the various building shapes, the ambient noise images according to the season, and the distortion by angle and distance. The computer vision based building recognition algorithms presented so far has limitations in discernment and expandability due to manual definition of building characteristics. This paper introduces the deep learning CNN (Convolutional Neural Network) model, and proposes new method to improve the recognition rate even by changes of building images caused by season, illumination, angle and perspective. This paper introduces the partial images that characterize the building, such as windows or wall images, and executes the training with whole building images. Experimental results show that the building recognition rate is improved by about 14% compared to the general CNN model.

Characteristic Classification of Aroma Oil with Gas Sensors Array and Pattern Recognition (가스센서 어레이와 패턴인식을 활용한 아로마 오일의 특성 분류)

  • Choi, Il-Hwan;Hong, Sung-Joo;Kim, Sun-Tae
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.118-125
    • /
    • 2018
  • An evaluation system for an electronic-nose concept using three types of metal oxide gas sensors that react similarly to the human olfactory cells was constructed for the quantitative and qualitative evaluation of aroma fragrances. Four types of aroma fragrances (lavender, orange, jasmine, and Roman chamomile), which are commonly used in aromatherapy, were evaluated. All the gas sensors reacted remarkably to the aroma fragrances and the good correlation of r=0.58-0.88 with the aromatic odor intensities by olfaction was confirmed. From the results of the analysis of an electronic-nose concept for classifying the characteristics of aroma oil fragrances, aroma oils could be classified using the fragrance characteristics and oil extraction methods with the cumulative variability contribution rate of 95.65% (F1: 69.65%, F2: 26.03%) by principal component analysis. In the pattern recognition based on the artificial neural network, the four aroma fragrances were 100% recognized through the training data of 56 cases (70%) out of 80 cases, and the pattern recognition rate was 57.1%-71.4% through the validation and testing data of 24 cases (30%). The pattern recognition success rate through all confusion matrices was 82.1%, indicating that the classification of aroma oil fragrances using the three types of gas sensors was successful.

The Accuracy of Recognizing Emotion From Korean Standard Facial Expression (한국인 표준 얼굴 표정 이미지의 감성 인식 정확률)

  • Lee, Woo-Ri;Whang, Min-Cheol
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.9
    • /
    • pp.476-483
    • /
    • 2014
  • The purpose of this study was to make a suitable images for korean emotional expressions. KSFI(Korean Standard Facial Image)-AUs was produced from korean standard apperance and FACS(Facial Action coding system)-AUs. For the objectivity of KSFI, the survey was examined about emotion recognition rate and contribution of emotion recognition in facial elements from six-basic emotional expression images(sadness, happiness, disgust, fear, anger and surprise). As a result of the experiment, the images of happiness, surprise, sadness and anger which had shown higher accuracy. Also, emotional recognition rate was mainly decided by the facial element of eyes and a mouth. Through the result of this study, KSFI contents which could be combined AU images was proposed. In this future, KSFI would be helpful contents to improve emotion recognition rate.

A Study of Improving LDP Code Using Edge Directional Information (에지 방향 정보를 이용한 LDP 코드 개선에 관한 연구)

  • Lee, Tae Hwan;Cho, Young Tak;Ahn, Yong Hak;Chae, Ok Sam
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.7
    • /
    • pp.86-92
    • /
    • 2015
  • This study proposes new LDP code to improve facial expression recognition rate by including local directional number(LDN), edge magnitudes and differences of neighborhood edge intensity. LDP is less sensitive on the change of intensity and stronger about noise than LBP. But LDP is difficult to express the smooth area without changing of intensity and if background image has the similar pattern with a face, the facial expression recognition rate of LDP is low. Therefore, we make the LDP code has the local directional number and the edge strength and experiment the facial expression recognition rate of changed LDP code.

An Enhanced Neural Network Approach for Numeral Recognition

  • Venugopal, Anita;Ali, Ashraf
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.3
    • /
    • pp.61-66
    • /
    • 2022
  • Object classification is one of the main fields in neural networks and has attracted the interest of many researchers. Although there have been vast advancements in this area, still there are many challenges that are faced even in the current era due to its inefficiency in handling large data, linguistic and dimensional complexities. Powerful hardware and software approaches in Neural Networks such as Deep Neural Networks present efficient mechanisms and contribute a lot to the field of object recognition as well as to handle time series classification. Due to the high rate of accuracy in terms of prediction rate, a neural network is often preferred in applications that require identification, segmentation, and detection based on features. Neural networks self-learning ability has revolutionized computing power and has its application in numerous fields such as powering unmanned self-driving vehicles, speech recognition, etc. In this paper, the experiment is conducted to implement a neural approach to identify numbers in different formats without human intervention. Measures are taken to improve the efficiency of the machines to classify and identify numbers. Experimental results show the importance of having training sets to achieve better recognition accuracy.