• Title/Summary/Keyword: recognition-rate

Search Result 2,809, Processing Time 0.028 seconds

A Method for Automatic Detection of Character Encoding of Multi Language Document File (다중 언어로 작성된 문서 파일에 적용된 문자 인코딩 자동 인식 기법)

  • Seo, Min Ji;Kim, Myung Ho
    • KIISE Transactions on Computing Practices
    • /
    • v.22 no.4
    • /
    • pp.170-177
    • /
    • 2016
  • Character encoding is a method for changing a document to a binary document file using the code table for storage in a computer. When people decode a binary document file in a computer to be read, they must know the code table applied to the file at the encoding stage in order to get the original document. Identifying the code table used for encoding the file is thus an essential part of decoding. In this paper, we propose a method for detecting the character code of the given binary document file automatically. The method uses many techniques to increase the detection rate, such as a character code range detection, escape character detection, character code characteristic detection, and commonly used word detection. The commonly used word detection method uses multiple word database, which means this method can achieve a much higher detection rate for multi-language files as compared with other methods. If the proportion of language is 20% less than in the document, the conventional method has about 50% encoding recognition. In the case of the proposed method, regardless of the proportion of language, there is up to 96% encoding recognition.

Tag Mis-recognition Detection using RFID Tag Sensitivity in Logistics System (물류 시스템에서 RFID 태그 수신감도를 이용한 태그 오인식 검출)

  • Kim, Youngmin;Kang, Euisun
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.8
    • /
    • pp.9-17
    • /
    • 2015
  • One of RFID features is that each RFID tag has a unique identifying code. Logistic System utilizes RFID tag as location tracing, understanding stock or etc. On the other hand, there is a problem of overall lower recognition rate by getting the information of non-mobility tags with no need for reading. To solve this problem, we trace and analyze variation of moving and moveless RFID tag sensitivity by the hour. In analyzed data, we verify that tag sensitivity of mobile RFID is gradually increase while non-mobility tag has same intensity value. In order to detect mobile tag, we generate a function using Matlab with analyzed data and separate moving tags from non-mobility tags by software. As a result, we can confirm that non-mobility tags are detected by software and recognition rate of RFID tag is improved by separating moveless tag.

Real-Time Face Detection, Tracking and Tilted Face Image Correction System Using Multi-Color Model and Face Feature (복합 칼라모델과 얼굴 특징자를 이용한 실시간 얼굴 검출 추적과 기울어진 얼굴보정 시스템)

  • Lee Eung-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.4
    • /
    • pp.470-481
    • /
    • 2006
  • In this paper, we propose a real-time face detection, tracking and tilted face image correction system using multi-color model and face feature information. In the proposed system, we detect face candidate using YCbCr and YIQ color model. And also, we detect face using vertical and horizontal projection method and track people's face using Hausdorff matching method. And also, we correct tilted face with the correction of tilted eye features. The experiments have been performed for 110 test images and shows good performance. Experimental results show that the proposed algorithm robust to detection and tracking of face at real-time with the change of exterior condition and recognition of tilted face. Accordingly face detection and tilted face correction rate displayed 92.27% and 92.70% respectively and proposed algorithm shows 90.0% successive recognition rate.

  • PDF

A Study on Gesture Recognition Using Principal Factor Analysis (주 인자 분석을 이용한 제스처 인식에 관한 연구)

  • Lee, Yong-Jae;Lee, Chil-Woo
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.8
    • /
    • pp.981-996
    • /
    • 2007
  • In this paper, we describe a method that can recognize gestures by obtaining motion features information with principal factor analysis from sequential gesture images. In the algorithm, firstly, a two dimensional silhouette region including human gesture is segmented and then geometric features are extracted from it. Here, global features information which is selected as some meaningful key feature effectively expressing gestures with principal factor analysis is used. Obtained motion history information representing time variation of gestures from extracted feature construct one gesture subspace. Finally, projected model feature value into the gesture space is transformed as specific state symbols by grouping algorithm to be use as input symbols of HMM and input gesture is recognized as one of the model gesture with high probability. Proposed method has achieved higher recognition rate than others using only shape information of human body as in an appearance-based method or extracting features intuitively from complicated gestures, because this algorithm constructs gesture models with feature factors that have high contribution rate using principal factor analysis.

  • PDF

A Study on the Recognition of Car Plate using an Enhanced Fuzzy ART Algorithm (개선된 퍼지 ART 알고리즘을 이용한 차량 번호판 인식에 관한 연구)

  • 임은경;김광백
    • Journal of Korea Multimedia Society
    • /
    • v.3 no.5
    • /
    • pp.433-444
    • /
    • 2000
  • The recognition of car plate was investigated by means of the enhanced fuzzy ART algorithm. The morphological information of horizontal and vertical edges was used to extract a plate area from a car image. In addition, the contour tracking algorithm by utilizing the SOFM was applied to extract the specific area which includes characters from an extracted plate area. The extracted characteristic area was recognized by using the enhanced fuzzy ART algorithm. In this study we propose the novel fuzzy ART algorithm different from the conventional fuzzy ART algorithm by the dynamical establishment of the vigilance threshold which shows a tolerance limit of unbalance between voluntary and saved patterns for clustering. The extraction rate obtained by using the morphological information of horizontal and vertical edges showed better results than that from the color information of RGB and HSI. Furthermore, the recognition rate of the enhanced fuzzy ART algorithm was improved much more than that of the conventional fuzzy ART and SOFM algorithms.

  • PDF

Speech Recognition Accuracy Measure using Deep Neural Network for Effective Evaluation of Speech Recognition Performance (효과적인 음성 인식 평가를 위한 심층 신경망 기반의 음성 인식 성능 지표)

  • Ji, Seung-eun;Kim, Wooil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.12
    • /
    • pp.2291-2297
    • /
    • 2017
  • This paper describe to extract speech measure algorithm for evaluating a speech database, and presents generating method of a speech quality measure using DNN(Deep Neural Network). In our previous study, to produce an effective speech quality measure, we propose a combination of various speech measures which are highly correlated with WER(Word Error Rate). The new combination of various types of speech quality measures in this study is more effective to predict the speech recognition performance compared to each speech measure alone. In this paper, we describe the method of extracting measure using DNN, and we change one of the combined measure from GMM(Gaussican Mixture Model) score used in the previous study to DNN score. The combination with DNN score shows a higher correlation with WER compared to the combination with GMM score.

Automatic Coarticulation Detection for Continuous Sign Language Recognition (연속된 수화 인식을 위한 자동화된 Coarticulation 검출)

  • Yang, Hee-Deok;Lee, Seong-Whan
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.1
    • /
    • pp.82-91
    • /
    • 2009
  • Sign language spotting is the task of detecting and recognizing the signs in a signed utterance. The difficulty of sign language spotting is that the occurrences of signs vary in both motion and shape. Moreover, the signs appear within a continuous gesture stream, interspersed with transitional movements between signs in a vocabulary and non-sign patterns(which include out-of-vocabulary signs, epentheses, and other movements that do not correspond to signs). In this paper, a novel method for designing a threshold model in a conditional random field(CRF) model is proposed. The proposed model performs an adaptive threshold for distinguishing between signs in the vocabulary and non-sign patterns. A hand appearance-based sign verification method, a short-sign detector, and a subsign reasoning method are included to further improve sign language spotting accuracy. Experimental results show that the proposed method can detect signs from continuous data with an 88% spotting rate and can recognize signs from isolated data with a 94% recognition rate, versus 74% and 90% respectively for CRFs without a threshold model, short-sign detector, subsign reasoning, and hand appearance-based sign verification.

The Method of Object Location Sensing using RFID/USN for Ubiquitous Environment (유비쿼터스 환경을 위한 RFID/USN 기반 위치인식 방법)

  • Park, Sang-Yeol;Byun, Yung-Cheol;Kim, Jang-Hyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.2
    • /
    • pp.508-511
    • /
    • 2005
  • In the near future various new services will be created by using ubiquitous computing and ubiquitous network. Especially u-LBS(Ubiquitous Location Based Services) is recognized as one of the most important services. U-LBS is based on the data created by recognizing objects including both human and matters at any time and anywhere. Many researches related with object locating method by using RF are in the process of studying However there are few researches on the location of objects. In this paper we propose the recognition method of the location of objects by using RF and USN technology. In detail, the strength of RF signal is used to recognize the location of objects. Also we discuss about the future work to enhance the recognition rate of location by using a number of conditions including the weather, temperature etc. And Genetic Algorithm is used to get the optimal parameters with which we can get the more exact recognition rate of location.

  • PDF

Design and Implementation of a Smart Biological Cabinet using RFID (RFID 기반 스마트 생물학 실험실 캐비닛의 설계 및 구현)

  • Han, Youngwhan;Kim, Byungho;Eun, Seongbae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.4
    • /
    • pp.611-616
    • /
    • 2018
  • RFID-based Smart cabinets can make a recognition error owing to the electromagnetic wave interference. This paper proposes and implements a smart cabinet system for inventory management using RFID, especially which can be applied to biological laboratories. We calculate the optimal value of partition distance for the higher recognition rate between RFID tags and the reader, and the optimal partition thickness for electromagnetic wave absorption to achieve the higher recognition rate, in which two kinds of the partitions have been tested, a pure steel partition with various thickness and a thin steel partition attached with electromagnetic waves absorber. The experimental results show that the most recommended partition structure for the smart cabinets is one with the partition distance of 30cm and the partition thickness of 1mm attached with the electromagnetic wave absorption tapes.

The Identifier Recognition from Shipping Container Image by Using Contour Tracking and Self-Generation Supervised Learning Algorithm Based on Enhanced ART1 (윤곽선 추적과 개선된 ART1 기반 자가 생성 지도 학습 알고리즘을 이용한 운송 컨테이너 영상의 식별자 인식)

  • 김광백
    • Journal of Intelligence and Information Systems
    • /
    • v.9 no.3
    • /
    • pp.65-79
    • /
    • 2003
  • In general, the extraction and recognition of identifier is very hard work, because the scale or location of identifier is not fixed-form. And, because the provided image is contained by camera, it has some noises. In this paper, we propose methods for automatic detecting edge using canny edge mask. After detecting edges, we extract regions of identifier by detected edge information's. In regions of identifier, we extract each identifier using contour tracking algorithm. The self-generation supervised learning algorithm is proposed for recognizing them, which has the algorithm of combining the enhanced ART1 and the supervised teaming method. The proposed method has applied to the container images. The extraction rate of identifier obtained by using contour tracking algorithm showed better results than that from the histogram method. Furthermore, the recognition rate of the self-generation supervised teaming method based on enhanced ART1 was improved much more than that of the self-generation supervised learning method based conventional ART1.

  • PDF