• Title/Summary/Keyword: recognition-rate

Search Result 2,809, Processing Time 0.036 seconds

Research on Human Posture Recognition System Based on The Object Detection Dataset (객체 감지 데이터 셋 기반 인체 자세 인식시스템 연구)

  • Liu, Yan;Li, Lai-Cun;Lu, Jing-Xuan;Xu, Meng;Jeong, Yang-Kwon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.1
    • /
    • pp.111-118
    • /
    • 2022
  • In computer vision research, the two-dimensional human pose is a very extensive research direction, especially in pose tracking and behavior recognition, which has very important research significance. The acquisition of human pose targets, which is essentially the study of how to accurately identify human targets from pictures, is of great research significance and has been a hot research topic of great interest in recent years. Human pose recognition is used in artificial intelligence on the one hand and in daily life on the other. The excellent effect of pose recognition is mainly determined by the success rate and the accuracy of the recognition process, so it reflects the importance of human pose recognition in terms of recognition rate. In this human body gesture recognition, the human body is divided into 17 key points for labeling. Not only that but also the key points are segmented to ensure the accuracy of the labeling information. In the recognition design, use the comprehensive data set MS COCO for deep learning to design a neural network model to train a large number of samples, from simple step-by-step to efficient training, so that a good accuracy rate can be obtained.

Noise Robust Speech Recognition Based on Parallel Model Combination Adaptation Using Frequency-Variant (주파수 변이를 이용한 Parallel Model Combination 모델 적응에 기반한 잡음에 강한 음성인식)

  • Choi, Sook-Nam;Chung, Hyun-Yeol
    • The Journal of the Acoustical Society of Korea
    • /
    • v.32 no.3
    • /
    • pp.252-261
    • /
    • 2013
  • The common speech recognition system displays higher recognition performance in a quiet environment, while its performance declines sharply in a real environment where there are noises. To implement a speech recognizer that is robust in different speech settings, this study suggests the method of Parallel Model Combination adaptation using frequency-variant based on environment-awareness (FV-PMC), which uses variants in frequency; acquires the environmental data for speech recognition; applies it to upgrading the speech recognition model; and promotes its performance enhancement. This FV-PMC performs the speech recognition with the recognition model which is generated as followings: i) calculating the average frequency variant in advance among the readily-classified noise groups and setting it as a threshold value; ii) recalculating the frequency variant among noise groups when speech with unknown noises are input; iii) regarding the speech higher than the threshold value of the relevant group as the speech including the noise of its group; and iv) using the speech that includes this noise group. When noises were classified with the proposed FV-PMC, the average accuracy of classification was 56%, and the results from the speech recognition experiments showed the average recognition rate of Set A was 79.05%, the rate of Set B 79.43%m, and the rate of Set C 83.37% respectively. The grand mean of recognition rate was 80.62%, which demonstrates 5.69% more improved effects than the recognition rate of 74.93% of the existing Parallel Model Combination with a clear model, meaning that the proposed method is effective.

Adaptive Cross-Device Gait Recognition Using a Mobile Accelerometer

  • Hoang, Thang;Nguyen, Thuc;Luong, Chuyen;Do, Son;Choi, Deokjai
    • Journal of Information Processing Systems
    • /
    • v.9 no.2
    • /
    • pp.333-348
    • /
    • 2013
  • Mobile authentication/identification has grown into a priority issue nowadays because of its existing outdated mechanisms, such as PINs or passwords. In this paper, we introduce gait recognition by using a mobile accelerometer as not only effective but also as an implicit identification model. Unlike previous works, the gait recognition only performs well with a particular mobile specification (e.g., a fixed sampling rate). Our work focuses on constructing a unique adaptive mechanism that could be independently deployed with the specification of mobile devices. To do this, the impact of the sampling rate on the preprocessing steps, such as noise elimination, data segmentation, and feature extraction, is examined in depth. Moreover, the degrees of agreement between the gait features that were extracted from two different mobiles, including both the Average Error Rate (AER) and Intra-class Correlation Coefficients (ICC), are assessed to evaluate the possibility of constructing a device-independent mechanism. We achieved the classification accuracy approximately $91.33{\pm}0.67%$ for both devices, which showed that it is feasible and reliable to construct adaptive cross-device gait recognition on a mobile phone.

Improving Phoneme Recognition based on Gaussian Model using Bhattacharyya Distance Measurement Method (바타챠랴 거리 측정 기법을 사용한 가우시안 모델 기반 음소 인식 향상)

  • Oh, Sang-Yeob
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.1
    • /
    • pp.85-93
    • /
    • 2011
  • Previous existing vocabulary recognition programs calculate general vector values from a database, so they can not process phonemes that form during a search. And because they can not create a model for phoneme data, the accuracy of the Gaussian model can not secure. Therefore, in this paper, we recommend use of the Bhattacharyya distance measurement method based on the features of the phoneme-thus allowing us to improve the recognition rate by picking up accurate phonemes and minimizing recognition of similar and erroneous phonemes. We test the Gaussian model optimization through share continuous probability distribution, and we confirm the heighten recognition rate. The Bhattacharyya distance measurement method suggest in this paper reflect an average 1.9% improvement in performance compare to previous methods, and it has average 2.9% improvement based on reliability in recognition rate.

Speaker Recognition Using Optimal Path and Weighted Orthogonal Parameters (최적경로와 가중직교인자를 이용한 화자인식)

  • Park, Seung-Kyu;Bai, Chul-Soo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.11 no.2
    • /
    • pp.68-72
    • /
    • 1992
  • Recently, many researchers have studied the speaker recognition through the statistical processing method using Karhunen-Loeve Transform. However, the content of speaker's identity and the vocalization speed cause speaker recognition rate to be lowered. This parer studies the speaker recognition method using weighted orthogonal parameters which are weighted with eigen-values of speech so as to emphasize the speaker's identity, and optimal path which is made by DWP so as to normalize dynamic time feature of speech. To confirm this method, we compare the speaker recognition rate from this proposed method with that from the conventional statistical processing method. As a result, it is shown that this method is more excellent in speaker recognition rate than conventional method.

  • PDF

Speaker Recognition Using Optimal Path and Weighted Orthogonal Parameters (최적경로와 가중직교인자를 이용한 화자인식)

  • 남기환;배철수
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.7
    • /
    • pp.1539-1544
    • /
    • 2003
  • Recently, many researchers have studied the speaker recognition through the statistical processing method using Karhonen-Loeve Transform. However, the content of speaker's identity and the vocalization speed cause speaker recognition rate to be lowered. This parer studies the speaker recognition method using weighted parameters which are weighted with eigen-values of speech so as to emphasize the speaker's identity and optimal path which is made by DWP so as to normalize dynamic time feature of speech. To confirm this method, we compare the speaker recognition rate from this proposed method with that from the conventional statistical processing method. As a result, it is shown that this method is more excellent in speaker recognition rate than conventional method.

Speech Emotion Recognition Based on GMM Using FFT and MFB Spectral Entropy (FFT와 MFB Spectral Entropy를 이용한 GMM 기반의 감정인식)

  • Lee, Woo-Seok;Roh, Yong-Wan;Hong, Hwang-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2008.04a
    • /
    • pp.99-100
    • /
    • 2008
  • This paper proposes a Gaussian Mixture Model (GMM) - based speech emotion recognition methods using four feature parameters; 1) Fast Fourier Transform(FFT) spectral entropy, 2) delta FFT spectral entropy, 3) Mel-frequency Filter Bank (MFB) spectral entropy, and 4) delta MFB spectral entropy. In addition, we use four emotions in a speech database including anger, sadness, happiness, and neutrality. We perform speech emotion recognition experiments using each pre-defined emotion and gender. The experimental results show that the proposed emotion recognition using FFT spectral-based entropy and MFB spectral-based entropy performs better than existing emotion recognition based on GMM using energy, Zero Crossing Rate (ZCR), Linear Prediction Coefficient (LPC), and pitch parameters. In experimental Results, we attained a maximum recognition rate of 75.1% when we used MFB spectral entropy and delta MFB spectral entropy.

  • PDF

Hybrid Neural Networks for Pattern Recognition

  • Kim, Kwang-Baek
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.6
    • /
    • pp.637-640
    • /
    • 2011
  • The hybrid neural networks have characteristics such as fast learning times, generality, and simplicity, and are mainly used to classify learning data and to model non-linear systems. The middle layer of a hybrid neural network clusters the learning vectors by grouping homogenous vectors in the same cluster. In the clustering procedure, the homogeneity between learning vectors is represented as the distance between the vectors. Therefore, if the distances between a learning vector and all vectors in a cluster are smaller than a given constant radius, the learning vector is added to the cluster. However, the usage of a constant radius in clustering is the primary source of errors and therefore decreases the recognition success rate. To improve the recognition success rate, we proposed the enhanced hybrid network that organizes the middle layer effectively by using the enhanced ART1 network adjusting the vigilance parameter dynamically according to the similarity between patterns. The results of experiments on a large number of calling card images showed that the proposed algorithm greatly improves the character extraction and recognition compared with conventional recognition algorithms.

Connected Korean Digit Recognition Using Neural Networks and Lexical Analysis (신경망과 구문분석을 이용한 한국어 연결 숫자음 인식)

  • 이종석;이상욱
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.12
    • /
    • pp.21-30
    • /
    • 1993
  • In this paper, we propose a connected Korean digit recohnition system employing neural networks and lexical constraints of the Korean digits. In the proposed recognition system, firstly, each frame of digit string is labelled by phoneme classification neural networks.which are trained with the reference phoneme segments extracted form an isolated digit based on the position information. And, the frame labels are combined with each other for constructing the phoneme segments. Then, these segments are combined to form a digit candidate using the digit combination rules. The digit candidate is decided based on the condition for digit decision. If the condition is not satisfied, the digit candidate is further recognized using the digit decision neural network in the next step. In our approach, the neural networks are trained with 10 isolated digits uttered by 5 male speakers. To investigate the performance of the proposed recognition system, an intensive computer simulation on the 30 connected digit strings uttered by 5 male speakers is performed. The simulation result indicates that 95.6% digit recognition rate and 82% digit string recognition rate are provided by the proposed Korean digit recognition system.

  • PDF

Untact Face Recognition System Based on Super-resolution in Low-Resolution Images (초고해상도 기반 비대면 저해상도 영상의 얼굴 인식 시스템)

  • Bae, Hyeon Bin;Kwon, Oh Seol
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.3
    • /
    • pp.412-420
    • /
    • 2020
  • This paper proposes a performance-improving face recognition system based on a super resolution method for low-resolution images. The conventional face recognition algorithm has a rapidly decreased accuracy rate due to small image resolution by a distance. To solve the previously mentioned problem, this paper generates a super resolution images based o deep learning method. The proposed method improved feature information from low-resolution images using a super resolution method and also applied face recognition using a feature extraction and an classifier. In experiments, the proposed method improves the face recognition rate when compared to conventional methods.