DOI QR코드

DOI QR Code

Research on Human Posture Recognition System Based on The Object Detection Dataset

객체 감지 데이터 셋 기반 인체 자세 인식시스템 연구

  • Received : 2022.01.05
  • Accepted : 2022.02.17
  • Published : 2022.02.28

Abstract

In computer vision research, the two-dimensional human pose is a very extensive research direction, especially in pose tracking and behavior recognition, which has very important research significance. The acquisition of human pose targets, which is essentially the study of how to accurately identify human targets from pictures, is of great research significance and has been a hot research topic of great interest in recent years. Human pose recognition is used in artificial intelligence on the one hand and in daily life on the other. The excellent effect of pose recognition is mainly determined by the success rate and the accuracy of the recognition process, so it reflects the importance of human pose recognition in terms of recognition rate. In this human body gesture recognition, the human body is divided into 17 key points for labeling. Not only that but also the key points are segmented to ensure the accuracy of the labeling information. In the recognition design, use the comprehensive data set MS COCO for deep learning to design a neural network model to train a large number of samples, from simple step-by-step to efficient training, so that a good accuracy rate can be obtained.

컴퓨터 비전 연구에서 2차원 인체 자세는 매우 광범위한 연구 방향으로 특히 자세 추적과 행동 인식에서 유의미한 분야다. 인체 자세 표적 획득은 이미지에서 인체 목표를 정확히 찾는 방법을 연구하는 것이 핵심이며 인체 자세 인식은 인공지능(AI)에 적용하는 한편 일상생활에 활용되고 있어서 매우 중요한 연구의의가 있다. 인체 자세 인식 효과의 우수성의 기준은 인식 과정의 성공률과 정확도에 의해 결정된다. 본 연구의 인체 자세 인식에서는 딥러닝 전용 데이터셋인 MS COCO를 기반하여 인체를 17개의 키 포인트로 구분하였다. 다음으로 주요 특징에 대한 세분화 마스크(segmentation mask) 방법을 사용하여 인식률을 개선하였다. 최종적으로 신경망 모델을 설계하고 간단한 단계별 학습부터 효율적인 학습에 이르기까지 많은 수의 표본을 학습시키는 알고리즘을 제안하여 정확도를 향상할 수 있었다.

Keywords

References

  1. Y. Bae, "Groundwater level prediction using ANFIS algorithm," J. of the Korea Institute of Electronic Communication Sciences, vol. 110, 2021, pp. 1239-1248.
  2. B. Kim, "American Sign Language Recognition System Using Wearable Sensors with Deep Learning Approach," J. of the Korea Institute of Electronic Communication Sciences, vol. 4, 2020, pp. 291-298.
  3. Y. Naigong,L. Jian, "Human body posture recognition algorithm for still images[J]," The Journal of Engineering,2020,vol. 2020(13).
  4. K. He, G. Gkioxari, P. Dollar, R. B. Girshick, "Mask R-CNN," In ICCV, 2017, pp. 2980-2988.
  5. G. Papandreou, T. Zhu, N. Kanazawa, A. Toshev, J. Tompson, C. Bregler, K. Murphy, "Towards accurate multi-person pose estimation in the wild." In CVPR, 2017, pp. 3711-3719.
  6. A. Toshev, C. Szegedy. "Deeppose: Human pose estimation via deep neural networks." In CVPR, 2014, pp. 1653-1660.
  7. G. Papandreou, T. Zhu, L. Chen, S. Gidaris, J. Tompson, and K. Murphy, "Personlab: Person pose estimation and instance segmentation with a bottom-up, part-based, geometric embedding model," In ECCV, September 2018.
  8. Y. L. CHEN, Z. C. WANG, Y. X. PENG et al, "Cascaded pyramid network for multi-person pose estimation[C]," The 31st Meeting of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2018.
  9. W. Ouyang, X. Chu, X. Wang, "Multi-source deep learning for human pose estimation," In CVPR, 2014, pp. 2337-2344.
  10. K. Sun, C. Lan, J. Xing, W. Zeng, D. Liu, J. Wang. "Human pose estimation using global and local normalization," In ICCV, 2017. vol. 2, no. 6, pp. 5693-5706.
  11. B,Tang , R. Fan ,X. Sun,"Application of Human Pose Recognition Algorithm in Visual Human-computer," J. of Computer Measurement and Control,2019,vol. 27 no. 7 pp.. 242-247.
  12. X. Chu, W. Yang, W. Ouyang, C. Ma, A. Yuille, X. Wang, "Multi-context attention for human pose estimation." In CVPR, 2017, pp. 5669-5678.