• Title/Summary/Keyword: recognition-rate

Search Result 2,809, Processing Time 0.03 seconds

A study on the spoken digit recognition performance of the Two-Stage recurrent neural network (2단 회귀신경망의 숫자음 인식에관한 연구)

  • 안점영
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.3B
    • /
    • pp.565-569
    • /
    • 2000
  • We compose the two-stage recurrent neural network that returns both signals of a hidden and an output layer to the hidden layer. It is tested on the basis of syllables for Korean spoken digit from /gong/to /gu. For these experiments, we adjust the neuron number of the hidden layer, the predictive order of input data and self-recurrent coefficient of the decision state layer. By the experimental results, the recognition rate of this neural network is between 91% and 97.5% in the speaker-dependent case and between 80.75% and 92% in the speaker-independent case. In the speaker-dependent case, this network shows an equivalent recognition performance to Jordan and Elman network but in the speaker-independent case, it does improved performance.

  • PDF

Off-line PD Model Classification of Traction Motor Stator Coil Using BP

  • Park Seong-Hee;Jang Dong-Uk;Kang Seong-Hwa;Lim Kee-Joe
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.5C no.6
    • /
    • pp.223-227
    • /
    • 2005
  • Insulation failure of traction motor stator coil depends on the continuous stress imposed on it and knowing its insulation condition is an issue of significance for proper safety operation. In this paper, application of the NN (Neural Network) as a scheme of the off-line PD (partial discharge) diagnosis method that occurs at the stator coil of a traction motor was studied. For PD data acquisition, three defective models were made; internal void discharge model, slot discharge model and surface discharge model. PD data for recognition were acquired from a PD detector. Statistical distributions and parameters were calculated to perform recognition between model discharge sources. These statistical distribution parameters are applied to classify PD sources by the NN with a good recognition rate on the discharge sources.

A Study on the Synthesis of HMM and GA-MLP for EMG Signal Recognition (근전도 신호인식을 위한 HMM과 GA-MLP의 합성에 관한 연구)

  • Shin, C.K.;Lee, D.H.;Lee, S.M.;Kwon, J.W.;Hong, S.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1996 no.11
    • /
    • pp.199-202
    • /
    • 1996
  • In this paper, we suggested the combination of HMM(Hidden Markov Model) and MLP (Multi-Layer Perceptron) with GA(genetic algorithm) for a recognition of EMG signals. To describe EMG signal's dynamic properties, HMM algorithm was adapted and due to its outstanding abilities in static signal classification MLP was connected as a real processor. We also used GA( Genetic Algorithm) for improving MLP's learning rate. Experimental results showed that the suggested classifier gave higher EMG signal recognition rates with faster learning time than other one.

  • PDF

Speech Emotion Recognition by Speech Signals on a Simulated Intelligent Robot (모의 지능로봇에서 음성신호에 의한 감정인식)

  • Jang, Kwang-Dong;Kwon, Oh-Wook
    • Proceedings of the KSPS conference
    • /
    • 2005.11a
    • /
    • pp.163-166
    • /
    • 2005
  • We propose a speech emotion recognition method for natural human-robot interface. In the proposed method, emotion is classified into 6 classes: Angry, bored, happy, neutral, sad and surprised. Features for an input utterance are extracted from statistics of phonetic and prosodic information. Phonetic information includes log energy, shimmer, formant frequencies, and Teager energy; Prosodic information includes pitch, jitter, duration, and rate of speech. Finally a patten classifier based on Gaussian support vector machines decides the emotion class of the utterance. We record speech commands and dialogs uttered at 2m away from microphones in 5different directions. Experimental results show that the proposed method yields 59% classification accuracy while human classifiers give about 50%accuracy, which confirms that the proposed method achieves performance comparable to a human.

  • PDF

Aircraft Recognition from Remote Sensing Images Based on Machine Vision

  • Chen, Lu;Zhou, Liming;Liu, Jinming
    • Journal of Information Processing Systems
    • /
    • v.16 no.4
    • /
    • pp.795-808
    • /
    • 2020
  • Due to the poor evaluation indexes such as detection accuracy and recall rate when Yolov3 network detects aircraft in remote sensing images, in this paper, we propose a remote sensing image aircraft detection method based on machine vision. In order to improve the target detection effect, the Inception module was introduced into the Yolov3 network structure, and then the data set was cluster analyzed using the k-means algorithm. In order to obtain the best aircraft detection model, on the basis of our proposed method, we adjusted the network parameters in the pre-training model and improved the resolution of the input image. Finally, our method adopted multi-scale training model. In this paper, we used remote sensing aircraft dataset of RSOD-Dataset to do experiments, and finally proved that our method improved some evaluation indicators. The experiment of this paper proves that our method also has good detection and recognition ability in other ground objects.

Speech Recognition Method under Noisy Environments using Time-Delay Neural Network (시간지연신경회로망을 사용한 잡음 중의 음성인식 수법)

  • Choi, Jae Seung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.711-714
    • /
    • 2009
  • 잡음환경 하의 회화에서 잡음량을 줄이고 신호처리 시스템의 성능을 향상시키기 위해서는 잡음량에 따라서 적응적으로 처리되는 신호처리 시스템이 필요하다. 또한 잡음이 중첩된 음성으로부터 잡음을 제거하기 위해서는 잡음의 크기에 따라서 음성 처리 시스템의 파라미터를 변경하는 것이 양호한 음질의 음성을 재생하는데 바람직하다. 따라서 본 논문에서는 음성 속에 포함되는 잡음량을 인식하는 방법으로 선형예측계수를 구하여 시간지연신경회로망(Time-delay neural network: TDNN)의 입력으로 사용하여 학습시키는 잡음량을 인식하는 방법을 제안한다. 본 잡음량 인식은 다양한 배경잡음에 의하여 열화된 3종류의 음성이 TDNN에 의하여 학습되어진다. 본 실험에서는 Aurora2 데이터베이스를 사용하여 여러 잡음에 대하여 양호한 인식결과를 확인할 수 있었다.

  • PDF

Pedestrian Recognition of Crosswalks Using Foot Estimation Techniques Based on HigherHRNet (HigherHRNet 기반의 발추정 기법을 통한 횡단보도 보행자 인식)

  • Jung, Kyung-Min;Han, Joo-Hoon;Lee, Hyun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.16 no.5
    • /
    • pp.171-177
    • /
    • 2021
  • It is difficult to accurately extract features of pedestrian because the pedestrian is photographed at a crosswalk using a camera positioned higher than the pedestrian. In addition, it is more difficult to extract features when a part of the pedestrian's body is covered by an umbrella or parasol or when the pedestrian is holding an object. Representative methods to solve this problem include Object Detection, Instance Segmentation, and Pose Estimation. Among them, this study intends to use the Pose Estimation method. In particular, we intend to increase the recognition rate of pedestrians in crosswalks by maintaining the image resolution through HigherHRNet and applying the foot estimation technique. Finally, we show the superiority of the proposed method by applying and analyzing several data sets covered by body parts to the existing method and the proposed method.

Atypical Character Recognition Based on Mask R-CNN for Hangul Signboard

  • Lim, Sooyeon
    • International journal of advanced smart convergence
    • /
    • v.8 no.3
    • /
    • pp.131-137
    • /
    • 2019
  • This study proposes a method of learning and recognizing the characteristics that are the classification criteria of Hangul using Mask R-CNN, one of the deep learning techniques, to recognize and classify atypical Hangul characters. The atypical characters on the Hangul signboard have a lot of deformed and colorful shapes beyond the general characters. Therefore, in order to recognize the Hangul signboard character, it is necessary to learn a separate atypical Hangul character rather than the existing formulaic one. We selected the Hangul character '닭' as sample data and constructed 5,383 Hangul image data sets and used them for learning and verifying the deep learning model. The accuracy of the results of analyzing the performance of the learning model using the test set constructed to verify the reliability of the learning model was about 92.65% (the area detection rate). Therefore we confirmed that the proposed method is very useful for Hangul signboard character recognition, and we plan to extend it to various Hangul data.

Data Correction For Enhancing Classification Accuracy By Unknown Deep Neural Network Classifiers

  • Kwon, Hyun;Yoon, Hyunsoo;Choi, Daeseon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.9
    • /
    • pp.3243-3257
    • /
    • 2021
  • Deep neural networks provide excellent performance in pattern recognition, audio classification, and image recognition. It is important that they accurately recognize input data, particularly when they are used in autonomous vehicles or for medical services. In this study, we propose a data correction method for increasing the accuracy of an unknown classifier by modifying the input data without changing the classifier. This method modifies the input data slightly so that the unknown classifier will correctly recognize the input data. It is an ensemble method that has the characteristic of transferability to an unknown classifier by generating corrected data that are correctly recognized by several classifiers that are known in advance. We tested our method using MNIST and CIFAR-10 as experimental data. The experimental results exhibit that the accuracy of the unknown classifier is a 100% correct recognition rate owing to the data correction generated by the proposed method, which minimizes data distortion to maintain the data's recognizability by humans.

A Study on Hazardous Sound Detection Robust to Background Sound and Noise (배경음 및 잡음에 강인한 위험 소리 탐지에 관한 연구)

  • Ha, Taemin;Kang, Sanghoon;Cho, Seongwon
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.12
    • /
    • pp.1606-1613
    • /
    • 2021
  • Recently various attempts to control hardware through integration of sensors and artificial intelligence have been made. This paper proposes a smart hazardous sound detection at home. Previous sound recognition methods have problems due to the processing of background sounds and the low recognition accuracy of high-frequency sounds. To get around these problems, a new MFCC(Mel-Frequency Cepstral Coefficient) algorithm using Wiener filter, modified filterbank is proposed. Experiments for comparing the performance of the proposed method and the original MFCC were conducted. For the classification of feature vectors extracted using the proposed MFCC, DNN(Deep Neural Network) was used. Experimental results showed the superiority of the modified MFCC in comparison to the conventional MFCC in terms of 1% higher training accuracy and 6.6% higher recognition rate.