• 제목/요약/키워드: receptor agonist

검색결과 564건 처리시간 0.023초

Dopamine Dl Recptor 효능제인 SKF 81297의 이뇨작용에 대한 신장 신경 제거 및 Dopamine Dl Receptor차단제인 SCH 23390의 영향 (Effects of Renal Denervation and SCH 23390, Dopamine Dl Receptor Antagonist, on Diuretic Action of SKF 81297, Dopamine Dl Receptor Agonist, in Dog)

  • 고석태;정경희;임동윤
    • Biomolecules & Therapeutics
    • /
    • 제10권1호
    • /
    • pp.50-58
    • /
    • 2002
  • lt had been reproted previously that (${\pm}$)6-chloro-7,8-dihydroxy-1-phenyl 2,3,4,5-tetra-hydro -lH-3benzazepine (SKF 81297), dopamine $D_1$ receptor agonist, produced diuresis by both Indirect action through central function and direct action being induced in kidney. This study was attempted in order to examine the diuresis mechanism of such SKF 81297 Diuretic action of SKF 81297 given into the vein or the carotid artery was not affected by renal denervation, whereas diuretic action of SKF 81297 administered into a renal artery was blocked completely by renal denervation, and then diuretic action of SKF 81297 injected into carotid artery was inhibited by SCH 23390, dopamine $D_1$ receptor antagonist, given into carotid artery. Above results suggest that indirect diuretic action of SKF 81297 elicites through central dopamine $D_1$ receptor and direct diuresis in kidney by influence of renal nerves.

돼지 분만 시기의 조절에 관하여 I. 자궁 평활근의 운동성에 대한 부교감 신경과 Cholinergic Agonist의 영향 (Control of Parturition Time on Pig I. Effect of Parasympathetic Nerve and Cholinergic Agonist on Uterine Smooth Muscle Motility)

  • 박상은;황보원;변유성;조광제
    • 한국동물위생학회지
    • /
    • 제17권3호
    • /
    • pp.247-254
    • /
    • 1994
  • To elucidate the action of the cholinergic nerve on the isolated uterine smooth muscle of the pig, effects of electrical transmural nerve stimulation and acetylcholine were investigated on the pretreatment of the physostigmine ; cholinestrase inhibitor and atropine ; cholinergic receptor blocker from physiograph. 1. The contractile response induced by acetylcholine was responsed in the concentration of 10^{-8}$ M at first and the maximum contractility was concentration of $10^{-6}$ M. 2. The contractile response induced by electrical transmural nerve stimulation(20 V, 0.5 Msec, 20 sec) was the frequency(2-64 Hz) -dependent manner. 3. The contractile response induced by acetylcholine was completely blocked by the pretreatment with cholinergic receptor blocker, atropine and was increased by the pretrement of cholinestrase inhibitor, physostigmine. 4. The contractile response induced by electrical transmural nerve stimulation was completely blocked by the pretreatment with cholinergic receptor blocker, atropine, and was increased by the pretretment of cholinestrase inhibitor, physostigmine. These findings suggest that it was powerful excitatory action by cholinergic nerve on uterine smooth muscle of the pig.

  • PDF

The Differential Effect of Whole-body Irradiation on Morphine- and $\beta$-Endorphin-Induced Antinociceptive Actions in Mice

  • Kim, Kyung-N.;Chung, Ki-M.
    • International Journal of Oral Biology
    • /
    • 제34권3호
    • /
    • pp.137-142
    • /
    • 2009
  • Whole-body $\gamma$-irradiation(WBI), which produces an oxidative stress, is reported to attenuate the acute antinociceptive action of morphine (a $\mu$-opioid receptor agonist), but not DPLPE (a $\delta$-opioid receptor agonist), in mice. Recently, we also reported that antinociceptive effect of morphine, but not $\beta$-endorphin (a novel $\varepsilon$-opioid receptor agonist), was attenuated by oxidative stress. These findings prompted us to investigate the effect of WBI on the antinociception of morphine and $\beta$-endorphin in mice. Mice were exposed to WBI (5 Gy) from a $^{60}Co$ gamma-source and tested 2 hours later for antinociception produced by intracerebroventricular administration of morphine or $\beta$-endorphin using the hot water tail-immersion and the writhing tests. WBI significantly attenuated the antinociception produced by morphine only in the hot water tail-immersion test, whereas the antinociception of $\beta$-endorphin was significantly potentiated by WBI in both tests. These results demonstrate a differential sensitivity of $\mu$- and $\varepsilon$-opioid receptors to WBI, and support the hypothesis that morphine and $\beta$-endorphin administered supraspinally produce antinociception by different neuronal mechanisms.

Activation of Adenosine A2A Receptor Impairs Memory Acquisition but not Consolidation or Retrieval Phases

  • Kim, Dong-Hyun;Ryu, Jong-Hoon
    • Biomolecules & Therapeutics
    • /
    • 제16권4호
    • /
    • pp.320-327
    • /
    • 2008
  • Several lines of evidence indicate that adenosine $A_{2A}$ agonist disrupts spatial working memory. However, it is unclear which stages of learning and memory are affected by the stimulation of adenosine $A_{2A}$ receptor. To clarify these points, we employed CV-1808 as adenosine $A_{2A}$ agonist and investigated its effects on acquisition, consolidation, and retrieval phases of learning and memory using passive avoidance and the Morris water maze tasks. During the acquisition phase, CV-1808 (2-phenylaminoadenosine, 1 and 2 mg/kg, i.p.) decreased the latency time in passive avoidance task and the mean savings in the Morris water maze task, respectively. During the consolidation and retrieval phase tests, CV-1808 did not exhibited any effects on latency time in passive avoidance task and the mean savings in the Morris water maze task. These results suggest that CV-1808 as an adenosine $A_{2A}$ agonist impairs memory acquisition but not consolidation or retrieval.

Exercise-induced beige adipogenesis of iWAT in Cidea reporter mice

  • Kim, Jin Kyung;Go, Hye Sun;Kim, Sol Pin;Kim, Il Yong;Lee, Yun Hee;Oh, Seung Hyun;Lee, Ho;Seong, Je Kyung
    • BMB Reports
    • /
    • 제55권4호
    • /
    • pp.187-191
    • /
    • 2022
  • Obesity is caused by an imbalance between energy intake and energy expenditure. Exercise is attracting attention as one of the ways to treat obesity. Exercise induces 'beige adipogenesis' in white adipose tissue, increasing total energy expenditure via energy dissipation in the form of heat. Also, beige adipogenesis can be induced by treatment with a beta-adrenergic receptor agonist. We developed a Cidea-dual reporter mouse (Cidea-P2A-Luc2-T2A-tdTomato, Luciferase/tdTomato) model to trace and measure beige adipogenesis in vivo. As a result, both exercise and injection of beta-adrenergic receptor agonist induced beige adipogenesis and was detected through fluorescence and luminescence. We confirmed that exercise and beta-adrenergic receptor agonist induce beige adipogenesis in Cidea-dual reporter mouse, which will be widely used for detecting beige adipogenesis in vivo.

Characteristics of $A_1\;and\;A_2$ Adenosine Receptors upon the Acetylcholine Release in the Rat Hippocampus

  • Kim, Do-Kyung;Lee, Young-Soo;Choi, Bong-Kyu
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제2권1호
    • /
    • pp.31-39
    • /
    • 1998
  • As it has been reported that the depolarization induced acetylcholine (ACh) release is modulated by activation of presynaptic $A_1$ adenosine heteroreceptor and various lines of evidence suggest the $A_2$ adenosine receptor is present in the hippocampus. The present study was undertaken to delineate the role of adenosine receptors on the hippocampal ACh release. Slices from the rat hippocampus were equilibrated with $[^3H]choline$ and then the release amount of the labelled product, $[^3H]ACh$, which was evoked by electrical stimulation (rectangular pulses, 3 Hz, 2 ms, 24 mA, $5\;V/cm^{-1}$, 2 min), was measured, and the influence of various adenosine receptor-related agents on the evoked tritium outflow was investigated. And also, the drug-receptor binding assay was performed in order to confirm the presence of $A_1$ and $A_2$ adenosine receptors in the rat hippocampus. N-ethylcarboxamidoadenosine (NECA), a potent adenosine receptor agonist with nearly equal affinity at $A_1$ and $A_2$ adenosine receptors, in concentrations ranging from $1{\sim}30\;{\mu}M$, decreased the electrically-evoked $[^3H]ACh$ release in a concentration-dependent manner without affecting the basal rate of release. And the effect of NECA was significantly inhibited by 8-cyclopentyl-1,3-dipropylxanthine (DPCPX, 2 ${\mu}M$), a selective $A_1$ adenosine receptor antagonist, but was not influenced by 3,7-dimethyl-1-propargylxanthine (DMPX, 5 ${\mu}M$), a specific $A_2$ adenosine receptor antagonist. $N^6-cyclopentyladenosine$ (CPA), a selective $A_1$ adenosine receptor agonist, in doses ranging from 0.1 to 10 ${\mu}M$, reduced evoked $[^3H]ACh$ release in a dose-dependent manner without the change of the basal release. And the effect of CPA was significantly inhibited by 2 ${\mu}M$ DPCPX treatment. 2-P-(2-carboxyethyl)-phenethylamino-5'-N-ethylcarboxamidoadenosine hydrochloride (CGS-21680C), a potent $A_2$ adenosine receptor agonist, in concentrations ranging from 0.1 to 10 ${\mu}M$, did not alter the evoked ACh release. In the drug-receptor binding assay, the binding of $[^3H]2-chloro-N^6-cyclopentyladenosine$ ($[^3H]$CCPA) to the $A_1$ adenosine receptor of rat hippocampal membranes was inhibited by CPA ($K_i$ = 1.22 nM), NECA ($K_i=10.17 nM$) and DPCPX ($K_i=161.86 nM$), but not by CGS-21680C ($K_i=2,380 nM$) and DMPX ($K_i=22,367 nM$). However, the specific binding of $[^3H]CGS-21680C$ to the $A_2$ adenosine receptor was not observed. These results suggest that the $A_1$ adenosine heteroreceptor play an important role in evoked ACh release, but the presence of $A_2$ adenosine receptor is not confirmed in this study.

  • PDF

Effects of Mutagenesis of Highly Conserved Tyrosine Residues on the Function of m1 Muscarinic Receptor

  • Lee, Seok-Yong;Cho, Tai-Soon
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 1996년도 춘계학술대회
    • /
    • pp.209-209
    • /
    • 1996
  • Muscarinic acetylcholine receptors contain two highly conserved tyrosine residues which are located within or at the extracellular border of the second transmembrane domain. These tyrosine residues are located at positions 82 and 85 of the sequence of the ml subtype of muscarinic receptors. In this wok, we studied the involvement of these two residues in ligand binding to and agonist-induced activation this receptor subtype. our data suggest an important role for these two tyrosines in these processes, with a more prominent role for the tyrosine residue located at position 82 than that located at position 85. Evidence is also provided that while the aromatic moiety of these tyrosine residues is important for antagonist binding, both this moiety and the tyrosine phenolic hydroxyl group are involved in agonist binding and receptor activation.

  • PDF

Effects of Dopamine Agonists on Primary Cultured Neurons from Various Brain Regions

  • Kim, Kyeong-Man
    • Biomolecules & Therapeutics
    • /
    • 제2권1호
    • /
    • pp.16-22
    • /
    • 1994
  • Using 2 to 4 day-old postnatal rats, primary brain cell cultures were made from various brain regions (substantia nigra, hippocampus, striatum, and nucleus accumbens). Whole-cell patch clamp technique was used for electrophysiological studies. Neurons cultured from substantia nigra were characterized more in detail to test whether these cultured neurons were appropriate for physiological studies. Immunocytochemical and electrophysiological properties of these cultured neurons agreed with those from other in vivo or in vitro studies suggesting that cultured neurons maintained normal cytological and physiological conditions. Modulation of ionic channels through dopamine receptors were studied from brain areas where dopamine plays important roles on brain functions. When neurons were clamped near resting membrane potential (-74mV), R(+), R(+)-SKF 38393, a specific D$_1$receptor agonist, activated cultured striatal neurons, and dopamine itself produced biphasic responses. Responses of cultured hippocampal neurons to dopamine agonists were kinds of mirror images to those from striatal neurons; D$_1$receptor agonists inhibited hippocampal neurons but quinpirole, a D$_2$receptor agonist, activated them. Neurons cultured from nucleus accumbens were inhibited by dopamine.

  • PDF

LIGAND BINDING CHARACTERISTICS OF $K_2$- OPIOID RECEPTOR AND ITS ROLE IN REGULATION OF 〔$^3$H〕HISTAMINE RELEASE IN FRONTAL CORTEX OF THE RAT

  • Kim, Kee-Won-;Park, Kyu--Cho
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 1994년도 춘계학술대회 and 제3회 신약개발 연구발표회
    • /
    • pp.305-305
    • /
    • 1994
  • It has been shown that there are several subtypes of $\kappa$ opioid receptor, We have evaluated the properties of non-${\mu}$, non-$\delta$ binding of 〔$^3$H〕DIP, a nonselective opioid antagonist, in rat cortex membranes. Binding to ${\mu}$ and $\delta$ sites was inhibited by the use of an excess of competing selective agonists (DAMGO, DPDPE) for these sites. (-)Ethylketocyclazocine(EKC) inhibited 〔$^3$H〕DIP binding with Ki. of 70 nM. However, arylacetamides (U69593 and U50488H) gave little inhibition. Also, we have examined the opioid modulation of K$\^$+/(30 mM)-induced histamine release in rat frontal cortex slices labeled with 1-〔$^3$H〕histidine. The 〔$^3$H〕histamine release from cortex slices was inhibited by EKC, a $\kappa$$_1$-and $\kappa$$_2$-agonist, in a concentration-dependent manner(10 to 10,000 nM). The IC$\sub$50/ of EKC was 107 ${\pm}$ 6 nM. However, the $\delta$ receptor selective agonists, DPDPE and deltorphine II, ${\mu}$ receptor agonists, DAMGO and TAPS, $\kappa$$_1$-agonists, U69593 and U50488H, and $\varepsilon$-agonist, ${\beta}$-endorphin, did not inhibit histamine release even in micromoiar dose, indicating that ${\mu}$, $\delta$ or $\kappa$$_1$ receptors are not involved. The concentration-response curve of EKC was shifted to right in the presence of naloxone (300 nM), a ${\mu}$ preferential antagonist, norbinaltorphimine(300 nM), a $\kappa$$_1$ preferential antagonist and bremazocine(1 nM), a $\kappa$$_1$-agonist and $\kappa$$_2$-antagonist. These results suggest that $\kappa$$_2$ opioid receptor regulates histamine release in the frontal cortex of the rat.

  • PDF

Effects of adenosine receptor agonist on the rocuronium-induced neuromuscular block and sugammadex-induced recovery

  • Kim, Yong Beom;Lee, Sangseok;Choi, Hey Ran;In, Junyong;Chang, Young Jin;Kim, Ha Jung;Ro, Young Jin;Yang, Hong-Seuk
    • Korean Journal of Anesthesiology
    • /
    • 제71권6호
    • /
    • pp.476-482
    • /
    • 2018
  • Background: Several types of receptors are found at neuromuscular presynaptic membranes. Presynaptic inhibitory $A_1$ and facilitatory $A_{2A}$ receptors mediate different modulatory functions on acetylcholine release. This study investigated whether adenosine $A_1$ receptor agonist contributes to the first twitch tension (T1) of train-of-four (TOF) stimulation depression and TOF fade during rocuronium-induced neuromuscular blockade, and sugammadex-induced recovery. Methods: Phrenic nerve-diaphragm tissues were obtained from 30 adult Sprague-Dawley rats. Each tissue specimen was randomly allocated to either control group or 2-chloroadenosine (CADO, $10{\mu}M$) group. One hour of reaction time was allowed before initiating main experimental data collection. Loading and boost doses of rocuronium were sequentially administered until > 95% depression of the T1 was achieved. After confirming that there was no T1 twitch tension response, 15 min of resting time was allowed, after which sugammadex was administered. Recovery profiles (T1, TOF ratio [TOFR], and recovery index) were collected for 1 h and compared between groups. Results: There were statistically significant differences on amount of rocuronium (actually used during experiment), TOFR changes during concentration-response of rocuronium (P = 0.04), and recovery profiles (P < 0.01) of CADO group comparing with the control group. However, at the initial phase of this experiment, dose-response of rocuronium in each group demonstrated no statistically significant differences (P = 0.12). Conclusions: The adenosine $A_1$ receptor agonist (CADO) influenced the TOFR and the recovery profile. After activating adenosine receptor, sugammadex-induced recovery from rocuronium-induced neuromuscular block was delayed.