DOI QR코드

DOI QR Code

Activation of Adenosine A2A Receptor Impairs Memory Acquisition but not Consolidation or Retrieval Phases

  • Kim, Dong-Hyun (Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University) ;
  • Ryu, Jong-Hoon (Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University)
  • Published : 2008.12.31

Abstract

Several lines of evidence indicate that adenosine $A_{2A}$ agonist disrupts spatial working memory. However, it is unclear which stages of learning and memory are affected by the stimulation of adenosine $A_{2A}$ receptor. To clarify these points, we employed CV-1808 as adenosine $A_{2A}$ agonist and investigated its effects on acquisition, consolidation, and retrieval phases of learning and memory using passive avoidance and the Morris water maze tasks. During the acquisition phase, CV-1808 (2-phenylaminoadenosine, 1 and 2 mg/kg, i.p.) decreased the latency time in passive avoidance task and the mean savings in the Morris water maze task, respectively. During the consolidation and retrieval phase tests, CV-1808 did not exhibited any effects on latency time in passive avoidance task and the mean savings in the Morris water maze task. These results suggest that CV-1808 as an adenosine $A_{2A}$ agonist impairs memory acquisition but not consolidation or retrieval.

Keywords

References

  1. Abel, T. and Lattal, K. M. (2001). Molecular mechanisms of memory acquisition, consolidation and retrieval. Curr. Opin. Neurobiol. 11, 180-187 https://doi.org/10.1016/S0959-4388(00)00194-X
  2. Ahlijanian, M. K. and Takemori, A. E. (1985). Effects of (-)-N6-(R-phenylisopropyl)-adenosine (PIA) and caffeine on nociception and morphine-induced analgesia, tolerance and dependence in mice. Eur. J. Pharmacol. 112, 171-179 https://doi.org/10.1016/0014-2999(85)90493-5
  3. Angelucci, M. E., Cesario, C., Hiroi, R. H., Rosalen, P. L. and Da Cunha, C. (2002). Effects of caffeine on learning and memory in rats tested in the Morris water maze. Braz. J. Med. Biol. Res. 35, 1201-1208 https://doi.org/10.1590/S0100-879X2002001000013
  4. Angelucci, M. E., Vital, M. A., Cesario, C., Zadusky, C. R., Rosalen, P. L. and Da Cunha, C. (1999). The effect of caffeine in animal models of learning and memory. Eur. J. Pharmacol. 373, 135-140 https://doi.org/10.1016/S0014-2999(99)00225-3
  5. Barraco, R. A., Coffin, V. L., Altman, H. J. and Phillis, J. W. (1983). Central effects of adenosine analogs on locomotor activity in mice and antagonism of caffeine. Brain Res. 272, 392-395 https://doi.org/10.1016/0006-8993(83)90591-7
  6. Barros, D. M., Izquierdo, L. A., Medina, J. H. and Izquierdo, I. (2003). Pharmacological findings contribute to the understanding of the main physiological mechanisms of memory retrieval. Curr. Drug Targets CNS Neurol. Disord. 2, 81-94 https://doi.org/10.2174/1568007033482931
  7. Barros, D. M., Izquierdo, L. A., Mello e Souza, T., Ardenghi, P. G., Pereira, P., Medina, J. H. and Izquierdo, I. (2000). Molecular signalling pathways in the cerebral cortex are required for retrieval of one-trial avoidance learning in rats. Behav. Brain Res. 114, 183-192 https://doi.org/10.1016/S0166-4328(00)00226-6
  8. Bekinschtein, P., Cammarota, M., Igaz, L. M., Bevilaqua, L. R., Izquierdo, I. and Medina, J. H. (2007). Persistence of longterm memory storage requires a late protein synthesis- and BDNF- dependent phase in the hippocampus. Neuron 53, 261-277 https://doi.org/10.1016/j.neuron.2006.11.025
  9. Collinson, N., Atack, J. R., Laughton, P., Dawson, G. R. and-Stephens, D. N. (2006). An inverse agonist selective for .·5 subunit-containing GABAA receptors improves encoding and recall but not consolidation in the Morris water maze. Psychopharmacology (Berl) 188, 619-628 https://doi.org/10.1007/s00213-006-0361-z
  10. Cormier, R. J., Mennerick, S., Melbostad, H. and Zorumski, C. F. (2001). Basal levels of adenosine modulate mGluR5 on rat hippocampal astrocytes. Glia 33, 24-35 https://doi.org/10.1002/1098-1136(20010101)33:1<24::AID-GLIA1003>3.0.CO;2-L
  11. Diogenes, M. J., Fernandes, C. C., Sebastiao, A. M. and Ribeiro, J. A. (2004). Activation of adenosine A2A receptor facilitates brain-derived neurotrophic factor modulation of synaptic transmission in hippocampal slices. J. Neurosci. 24, 2905-2913 https://doi.org/10.1523/JNEUROSCI.4454-03.2004
  12. Dragunow, M. (1988). Purinergic mechanisms in epilepsy. Prog. Neurobiol. 31, 85-108 https://doi.org/10.1016/0301-0082(88)90028-7
  13. Dunwiddie, T. V. and Masino, S. A. (2001). The role and regulation of adenosine in the central nervous system. Annu. Rev. Neurosci. 24, 31-55 https://doi.org/10.1146/annurev.neuro.24.1.31
  14. Egan, M. F., Kojima, M., Callicott, J. H., Goldberg, T. E., Kolachana, B. S., Bertolino, A., Zaitsev, E., Gold, B., Goldman, D., Dean, M., Lu, B. and Weinberger, D. R. (2003). The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell 112, 257-269 https://doi.org/10.1016/S0092-8674(03)00035-7
  15. Ernens, I., Rouy, D., Velot, E., Devaux, Y. and Wagner, D. R. (2006). Adenosine inhibits matrix metalloproteinase-9 secretion by neutrophils: implication of $A_{2A}$ receptor and cAMP/PKA/$Ca^{2+}$ pathway. Circ. Res. 99, 590-597 https://doi.org/10.1161/01.RES.0000241428.82502.d4
  16. Ferre, S., Diamond, I., Goldberg, S. R., Yao, L., Hourani, S. M., Huang, Z. L., Urade, Y. and Kitchen, I. (2007). Adenosine A2A receptors in ventral striatum, hypothalamus and nociceptive circuitry implications for drug addiction, sleep and pain. Prog. Neurobiol. 83, 332-347 https://doi.org/10.1016/j.pneurobio.2007.04.002
  17. Fredholm, B. B., Chen, J. F., Masino, S. A. and Vaugeois, J. M. (2005). Actions of adenosine at its receptors in the CNS: insights from knockouts and drugs. Annu. Rev. Pharmacol. Toxicol. 45, 385-412 https://doi.org/10.1146/annurev.pharmtox.45.120403.095731
  18. Fredholm, B. B., Lindstrom, K. and Wallman-Johansson, A. (1994). Propentofylline and other adenosine transport inhibitors increase the efflux of adenosine following electrical or metabolic stimulation of rat hippocampal slices. J. Neurochem. 62, 563-573 https://doi.org/10.1046/j.1471-4159.1994.62020563.x
  19. Gerashchenko, D., Okano, Y., Urade, Y., Inoué, S. and Hayaishi, O. (2000). Strong rebound of wakefulness follows prostaglandin $D_{2-}$ or adenosine $A_{2A}$ receptor agonist-induced sleep. J. Sleep Res. 9, 81-87 https://doi.org/10.1046/j.1365-2869.2000.00175.x
  20. Gimenez-Llort, L., Schiffmann, S. N., Shmidt, T., Canela, L., Camon, L., Wassholm, M., Canals, M., Terasmaa, A., Fernandez-Teruel, A., Tobena, A., Popova, E., Ferre, S., Agnati, L., Ciruela, F., Martinez, E., Scheel-Kruger, J., Lluis, C., Franco, R., Fuxe, K. and Bader, M. (2007). Working memory deficits in transgenic rats overexpressing human adenosine A2A receptors in the brain. Neurobiol. Learn. Mem. 87, 42-56 https://doi.org/10.1016/j.nlm.2006.05.004
  21. Hauber, W. and Bareiss, A. (2001). Facilitative effects of an adenosine A1/A2 receptor blockade on spatial memory performance of rats: selective enhancement of reference memory retention during the light period. Behav. Brain Res. 118, 43-52 https://doi.org/10.1016/S0166-4328(00)00307-7
  22. Hong, Z. Y., Huang, Z. L., Qu, W. M., Eguchi, N., Urade, Y. and Hayaishi, O. (2005). An adenosine A receptor agonist induces sleep by increasing GABA release in the tuberomammillary nucleus to inhibit histaminergic systems in rats. J. Neurochem. 92, 1542-1549 https://doi.org/10.1111/j.1471-4159.2004.02991.x
  23. Izquierdo, L. A., Viola, H., Barros, D. M., Alonso, M., Vianna, M. R., Furman, M., Levi de Stein, M., Szapiro, G., Rodrigues, C., Choi, H., Medina, J. H. and Izquierdo, I. (2001). Novelty enhances retrieval: molecular mechanisms involved in rat hippocampus. Eur. J. Neurosci. 13, 1464-1467 https://doi.org/10.1046/j.0953-816x.2001.01530.x
  24. Kanda, T., Tashiro, T., Kuwana, Y. and Jenner, P. (1998). Adenosine A2A receptors modify motor function in MPTP-treated common marmosets. Neuroreport 9, 2857-2860 https://doi.org/10.1097/00001756-199808240-00032
  25. Kishimoto, Y., Nakazawa, K., Tonegawa, S., Kirino, Y. and Kano, M. (2006). Hippocampal CA3 NMDA receptors are crucial for adaptive timing of trace eyeblink conditioned response. J. Neurosci. 26, 1562-1570 https://doi.org/10.1523/JNEUROSCI.4142-05.2006
  26. Koga, K., Kurokawa, M., Ochi, M., Nakamura, J. and Kuwana, Y. (2000). Adenosine A2A receptor antagonists KF17837 and KW-6002 potentiate rotation induced by dopaminergic drugs in hemi-Parkinsonian rats. Eur. J. Pharmacol. 408, 249-255 https://doi.org/10.1016/S0014-2999(00)00745-7
  27. Lopes, L. V., Cunha, R. A., Kull, B., Fredholm, B. B. and Ribeiro, J. A. (2002). Adenosine $A_{2A}$ receptor facilitation of hippocampal synaptic transmission is dependent on tonic $A_1$ receptor inhibition. Neuroscience 112, 319-329 https://doi.org/10.1016/S0306-4522(02)00080-5
  28. Kopf, S. R., Melani, A., Pedata, F. and Pepeu, G. (1999). Adenosine and memory storage: effect of A1 and $A_2$ receptor antagonists. Psychopharmacology (Berl) 146, 214-219 https://doi.org/10.1007/s002130051109
  29. Martin, G. E., Rossi, D. J. and Jarvis, M. F. (1993). Adenosine agonists reduce conditioned avoidance responding in the rat. Pharmacol. Biochem. Behav. 45, 951-958 https://doi.org/10.1016/0091-3057(93)90146-K
  30. Mihara, T., Mihara, K., Yarimizu, J., Mitani, Y., Matsuda, R., Yamamoto, H., Aoki, S., Akahane, A., Iwashita, A. and Matsuoka, N. (2007). Pharmacological characterization of a novel, potent adenosine $A_1$ and $A_{2A}$ receptor dual antagonist, 5-[5-amino-3-(4-fluorophenyl)pyrazin-2-yl]-1-isopropylpyridine-2(1H)-one (ASP5854), in models of Parkinson's disease and cognition. J. Pharmacol. Exp. Ther. 323, 708-719 https://doi.org/10.1124/jpet.107.121962
  31. Mingote, S., Pereira, M., Farrar, A. M., McLaughlin, P. J. and Salamone, J. D. (2008). Systemic administration of the adenosine $A_{2A}$ agonist CGS 21680 induces sedation at doses that suppress lever pressing and food intake. Pharmacol. Biochem. Behav. 89, 345-351 https://doi.org/10.1016/j.pbb.2008.01.006
  32. Nader, K. (2003). Neuroscience: re-recording human memories. Nature 425, 571-572 https://doi.org/10.1038/425571a
  33. Nakazawa, K., Quirk, M. C., Chitwood, R. A., Watanabe, M., Yeckel, M. F., Sun, L. D., Kato, A., Carr, C. A., Johnston, D., Wilson, M. A. and Tonegawa, S. (2002). Requirement for hippocampal CA3 NMDA receptors in associative memory recall. Science 297, 211-218 https://doi.org/10.1126/science.1071795
  34. Nehlig, A., Daval, J. L. and Debry, G. (1992). Caffeine and the central nervous system: mechanisms of action, biochemical, metabolic and psychostimulant effects. Brain Res. Rev. 17, 139-170 https://doi.org/10.1016/0165-0173(92)90012-B
  35. Normile, H. J. and Barraco, R. A. (1991). N6-cyclopentyladenosine impairs passive avoidance retention by selective action at $A_14 receptors. Brain Res. Bull. 27, 101-104 https://doi.org/10.1016/0361-9230(91)90288-U
  36. Normile, H. J., Gaston, S., Johnson, G. and Barraco, R. A. (1994). Activation of adenosine $A_1$ receptors in the nucleus accumbens impairs inhibitory avoidance memory. Behav. Neural. Biol. 62, 163-166 https://doi.org/10.1016/S0163-1047(05)80037-8
  37. Ohno, M. and Watanabe, S. (1996). Working memory failure by stimulation of hippocampal adenosine A1 receptors in rats. Neuroreport 7, 3013-3016 https://doi.org/10.1097/00001756-199611250-00043
  38. Ou, L. C. and Gean, P. W. (2006). Regulation of amygdaladependent learning by brain-derived neurotrophic factor is mediated by extracellular signal-regulated kinase and phosphatidylinositol-3-kinase. Neuropsychopharmacology 31, 287-296 https://doi.org/10.1038/sj.npp.1300830
  39. Pereira, G. S., Mello, E., Souza, T., Vinadé, E. R., Choi, H., Rodrigues, C., Battastini, A. M., Izquierdo, I., Sarkis, J. J. and Bonan, C. D. (2002). Blockade of adenosine A1 receptors in the posterior cingulate cortex facilitates memory in rats. Eur. J. Pharmacol. 437, 151-154 https://doi.org/10.1016/S0014-2999(02)01307-9
  40. Pereira, G. S., Rossato, J. I., Sarkis, J. J., Cammarota, M., Bonan, C. D. and Izquierdo, I. (2005). Activation of adenosine receptors in the posterior cingulate cortex impairs memory retrieval in the rat. Neurobiol. Learn. Mem. 83, 217-223 https://doi.org/10.1016/j.nlm.2004.12.002
  41. Post, C. (1984). Antinociceptive effects in mice after intrathecal injection of 5'-N-ethylcarboxamide adenosine. Neurosci. Lett. 51, 325-330 https://doi.org/10.1016/0304-3940(84)90397-5
  42. Prickaerts, J., Sik, A., van der Staay, F. J., de Vente, J. and Blokland, A. (2005). Dissociable effects of acetylcholinesterase inhibitors and phosphodiesterase type 5 inhibitors on object recognition memory: acquisition versus consolidation. Psychopharmacology (Berl) 177, 381-390 https://doi.org/10.1007/s00213-004-1967-7
  43. Rajji, T., Chapman, D., Eichenbaum, H. and Greene, R. (2006). The role of CA3 hippocampal NMDA receptors in paired associate learning. J. Neurosci. 26, 908-915 https://doi.org/10.1523/JNEUROSCI.4194-05.2006
  44. Rebola, N., Canas, P. M., Oliveira, C. R. and Cunha, R. A. (2005). Different synaptic and subsynaptic localization of adenosine A2A receptors in the hippocampus and striatum of the rat. Neuroscience 132, 893-903 https://doi.org/10.1016/j.neuroscience.2005.01.014
  45. Rebola, N., Lujan, R., Cunha, R. A. and Mulle, C. (2008). Adenosine $A_2A$ receptors are essential for long-term potentiation of NMDA-EPSCs at hippocampal mossy fiber synapses. Neuron 57, 121-134 https://doi.org/10.1016/j.neuron.2007.11.023
  46. Satoh, S., Matsumura, H. and Hayaishi, O. (1998). Involvement of adenosine $A_{2A}$ receptor in sleep promotion. Eur. J. Pharmacol. 351, 155-162 https://doi.org/10.1016/S0014-2999(98)00302-1
  47. Satoh, S., Matsumura, H., Koike, N., Tokunaga, Y., Maeda, T. and Hayaishi, O. (1999). Region-dependent difference in the sleep-promoting potency of an adenosine $A_{2A}$ receptor agonist. Eur. J. Neurosci. 11, 1587-1597 https://doi.org/10.1046/j.1460-9568.1999.00569.x
  48. Satoh, S., Matsumura, H., Suzuki, F. and Hayaishi, O. (1996). Promotion of sleep mediated by the $A_2A$ -adenosine receptor and possible involvement of this receptor in the sleep induced by prostaglandin D2 in rats. Proc. Natl. Acad. Sci. USA. 93, 5980-5984 https://doi.org/10.1073/pnas.93.12.5980
  49. Scammell, T. E., Gerashchenko, D. Y., Mochizuki, T., McCarthy, M. T., Estabrooke, I. V., Sears, C. A., Saper, C. B., Urade, Y. and Hayaishi, O. (2001). An adenosine A2A agonist increases sleep and induces Fos in ventrolateral preoptic neurons. Neuroscience 107, 653-663 https://doi.org/10.1016/S0306-4522(01)00383-9
  50. Shiozaki, S., Ichikawa, S., Nakamura, J., Kitamura, S., Yamada, K. and Kuwana, Y. (1999). Actions of adenosine $A_{2A}$ receptor antagonist KW-6002 on drug-induced catalepsy and hypokinesia caused by reserpine or MPTP. Psychopharmacology (Berl) 147, 90-95 https://doi.org/10.1007/s002130051146
  51. Silva, A. J. and Giese, K. P. (1994). Plastic genes are in! Curr. Opin. Neurobiol. 4, 413-420 https://doi.org/10.1016/0959-4388(94)90104-X
  52. Spealman, R. D. and Coffin, V. L. (1986). Behavioral effects of adenosine analogs in squirrel monkeys: relation to adenosine A2 receptors. Psychopharmacology (Berl) 90, 419-421 https://doi.org/10.1007/BF00179203
  53. Suzuki, A., Josselyn, S. A., Frankland, P. W., Masushige, S., Silva, A. J. and Kida, S. (2004). Memory reconsolidation and extinction have distinct temporal and biochemical signatures. J. Neurosci. 24, 4787-4795 https://doi.org/10.1523/JNEUROSCI.5491-03.2004
  54. Suzuki, F., Shimada, J., Shiozaki, S., Ichikawa, S., Ishii, A., Nakamura, J., Nonaka, H., Kobayashi, H. and Fuse, E. (1993). Adenosine A1 antagonists. 3. Structure-activity relationships on amelioration against scopolamine- or N6-((R)-phenylisopropyl)adenosine-induced cognitive disturbance. J. Med. Chem. 36, 2508-2518 https://doi.org/10.1021/jm00069a009
  55. Takahashi, R. N., Pamplona, F. A. and Prediger, R. D. (2008). Adenosine receptor antagonists for cognitive dysfunction: a review of animal studies. Front. Biosci. 13, 2614-2632 https://doi.org/10.2741/2870
  56. Tebano, M. T., Martire, A., Rebola, N., Pepponi, R., Domenici, M. R., Gro, M. C., Schwarzschild, M. A., Chen, J. F., Cunha, R. A. and Popoli, P. (2005). Adenosine $A_{2A}$ receptors and metabotropic glutamate 5 receptors are co-localized and functionally interact in the hippocampus: a possible key mechanism in the modulation of N-methyl-D-aspartate effects. J. Neurochem. 95, 1188-1200 https://doi.org/10.1111/j.1471-4159.2005.03455.x
  57. Wang, J. H., Ma, Y. Y. and van den Buuse, M. (2006). Improved spatial recognition memory in mice lacking adenosine A2A receptors. Exp. Neurol. 199, 438-445 https://doi.org/10.1016/j.expneurol.2006.01.005
  58. Winsky, L. and Harvey, J. A. (1986). Retardation of associative learning in the rabbit by an adenosine analog as measured by classical conditioning of the nictitating membrane response. J. Neurosci. 6, 2684-2690
  59. Wirkner, K., Gerevich, Z., Krause, T., Guenther, A., Koeles, L., Schneider, D., Noerenberg, W. and Illes, P. (2004). Adenosine A2A receptor-induced inhibition of NMDA and GABAA receptor-mediated synaptic currents in a subpopulation of rat striatal neurons. Neuropharmacology 46, 994-1007 https://doi.org/10.1016/j.neuropharm.2004.01.008
  60. Von Lubitz, D. K., Paul, I. A., Bartus, R. T. and Jacobson, K. A. (1993). Effects of chronic administration of adenosine A1 receptor agonist and antagonist on spatial learning and memory. Eur. J. Pharmacol. 249, 271-280 https://doi.org/10.1016/0014-2999(93)90522-J

Cited by

  1. The ameliorating effect of the extract of the flower of Prunella vulgaris var. lilacina on drug-induced memory impairments in mice vol.48, pp.6, 2010, https://doi.org/10.1016/j.fct.2010.03.042