• Title/Summary/Keyword: receptor activator of nuclear factor kappa-B ligand

Search Result 108, Processing Time 0.025 seconds

Curcumin Inhibits Osteoclastogenesis by Decreasing Receptor Activator of Nuclear Factor-κB Ligand (RANKL) in Bone Marrow Stromal Cells

  • Oh, Sora;Kyung, Tae-Wook;Choi, Hye-Seon
    • Molecules and Cells
    • /
    • v.26 no.5
    • /
    • pp.486-489
    • /
    • 2008
  • Curcumin (diferuloylmethane), a pigment derived from turmeric, has anti-oxidant and anti-inflammatory activities. Accumulating evidence points to a biochemical link between increased oxidative stress and reduced bone density. Osteoclast formation was evaluated in co-cultures of bone marrow stromal cells (BMSC) and whole bone marrow cells (BMC). Expression of receptor activator of nuclear factor-${\kappa}B$ ligand (RANKL) was analyzed at the mRNA and protein levels. Exposure to curcumin led to dose-dependent suppression of osteoclastogenesis in the co-culture system, and to reduced expression of RANKL in $IL-1{\alpha}$-stimulated BMSCs. Addition of RANKL abolished the inhibition of osteoclastogenesis by curcumin, whereas the addition of prostaglandin $E_2$ ($PGE_2$) did not. The decreased osteoclastogenesis induced by curcumin may reduce bone loss and be of potential benefit in preventing and/or attenuating osteoporosis.

Humanin suppresses receptor activator of nuclear factor-κB ligand-induced osteoclast differentiation via AMP-activated protein kinase activation

  • Kang, Namju;Kim, Ki Woo;Shin, Dong Min
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.23 no.5
    • /
    • pp.411-417
    • /
    • 2019
  • Humanin (HN) is a mitochondrial peptide that exhibits cytoprotective actions against various stresses and diseases. HN has been shown to induce the phosphorylation of AMP-activated protein kinase (AMPK), which is a negative regulator of receptor activator of nuclear factor-${\kappa}B$ ligand (RANKL). However, the role of HN in osteoclastogenesis or other skeletal disorders remains unknown. Here, we examined whether HN regulates osteoclastogenesis via AMPK activation using bone marrow-derived macrophage (BMM) cultures. Our results show that HN inhibited RANKL-induced osteoclast formation and reduced the expression of genes involved in osteoclastogenesis, including nuclear factor of activated T-cells cytoplasmic 1, osteoclastassociated receptor, cathepsin K, and tartrate-resistant acid phosphatase. Moreover, HN increased the levels of phosphorylated AMPK protein; compound C, an AMPK inhibitor, recovered HN-induced osteoclast differentiation. In addition, we found that HN significantly decreased the levels of RANKL-induced reactive oxygen species in BMMs. Therefore, these results indicate that HN plays an important role in osteoclastogenesis and may function as an inhibitor of bone disorders via AMPK activation.

Ginseng saponins and the treatment of osteoporosis: mini literature review

  • Siddiqi, Muhammad Hanif;Siddiqi, Muhammad Zubair;Ahn, Sungeun;Kang, Sera;Kim, Yeon-Ju;Sathishkumar, Natarajan;Yang, Dong-Uk;Yang, Deok-Chun
    • Journal of Ginseng Research
    • /
    • v.37 no.3
    • /
    • pp.261-268
    • /
    • 2013
  • The ginseng plant (Panax ginseng Meyer) has a large number of active ingredients including steroidal saponins with a dammarane skeleton as well as protopanaxadiol and protopanaxatriol, commonly known as ginsenosides, which have antioxidant, anticancer, antidiabetic, anti-adipocyte, and sexual enhancing effects. Though several discoveries have demonstrated that ginseng saponins (ginsenosides) as the most important therapeutic agent for the treatment of osteoporosis, yet the molecular mechanism of its active metabolites is unknown. In this review, we summarize the evidence supporting the therapeutic properties of ginsenosides both in vivo and in vitro, with an emphasis on the different molecular agents comprising receptor activator of nuclear factor kappa-B ligand, receptor activator of nuclear factor kappa-B, and matrix metallopeptidase-9, as well as the bone morphogenetic protein-2 and Smad signaling pathways.

Current Understanding of RANK Signaling in Osteoclast Differentiation and Maturation

  • Park, Jin Hee;Lee, Na Kyung;Lee, Soo Young
    • Molecules and Cells
    • /
    • v.40 no.10
    • /
    • pp.706-713
    • /
    • 2017
  • Osteoclasts are bone-resorbing cells that are derived from hematopoietic precursor cells and require macrophage-colony stimulating factor and receptor activator of nuclear factor-${\kappa}B$ ligand (RANKL) for their survival, proliferation, differentiation, and activation. The binding of RANKL to its receptor RANK triggers osteoclast precursors to differentiate into osteoclasts. This process depends on RANKL-RANK signaling, which is temporally regulated by various adaptor proteins and kinases. Here we summarize the current understanding of the mechanisms that regulate RANK signaling during osteoclastogenesis. In the early stage, RANK signaling is mediated by recruiting adaptor molecules such as tumor necrosis factor receptorassociated factor 6 (TRAF6), which leads to the activation of mitogen-activated protein kinases (MAPKs), and the transcription factors nuclear factor-${\kappa}B$ (NF-${\kappa}B$) and activator protein-1 (AP-1). Activated NF-${\kappa}B$ induces the nuclear factor of activated T-cells cytoplasmic 1 (NFATc1), which is the key osteoclastogenesis regulator. In the intermediate stage of signaling, the co-stimulatory signal induces $Ca^{2+}$ oscillation via activated phospholipase $C{\gamma}2$ ($PLC{\gamma}2$) together with c-Fos/AP-1, wherein $Ca^{2+}$ signaling facilitates the robust production of NFATc1. In the late stage of osteoclastogenesis, NFATc1 translocates into the nucleus where it induces numerous osteoclast-specific target genes that are responsible for cell fusion and function.

Effects of Sulraphane on Osteoclastogenesis in RAW 264.7 (RAW 264.7 세포에서 sulforaphane의 파골세포형성 저해효과)

  • Hwang, Joon-Ho;Yi, Mi-Ran;Kang, Chang-Hee;Bu, Hee-Jung
    • Journal of agriculture & life science
    • /
    • v.50 no.2
    • /
    • pp.151-160
    • /
    • 2016
  • Inflammatory cytokines play a major role in osteoclastogenesis, leading to the bone resorption that is frequently associated with osteoporosis. Sulforaphane, isolated from the Broccoli(Brassica oleracea var. italia) florets, inhibits the production of inflamatory cytokine. In the present study, we determined inhibitory effect of sulforaphane on Receptor activator of nuclear factor κB ligand(RANKL)-induced osteoclast formation. Sulforaphane inhibited the expression of osteoclast marker genes, such as tartrate-resistant acid phosphatase(TRAP), cathepsin K, matrix metalloproteinase 9(MMP-9), and calcitonin receptor in RANKL-induced RAW 264.7 macrophage. Also, sluforaphane inhibited the expression of osteoclast protein, such as TRAP, MMP-9, tumor necrosis factor receptor-associated factor 6(TRAF6) and transcription factor nuclease factor of activated T cells(NFAT)c1. Sulforaphane inhibited RANKL-induced activiation of nuclear factor kappaB(NF-kappaB) by suppression RANKL-mediated NF-kappaB transcriptional acitivation. We are confirmed that sulforaphane inhibits not only transcriptional activity of NF-kappaB but also expressions of the osteoclastogenesis factors(TRAP, cathepsin K, MMP-9, calcitonin, TRAF6) and trranscription factor NFATc1.

Effects of Lactobacillus reuteri MG5346 on Receptor Activator of Nuclear Factor-Kappa B Ligand (RANKL)-Induced Osteoclastogenesis and Ligature-Induced Experimental Periodontitis Rats

  • Yu-Jin Jeong;Jae-In Jung;YongGyeong Kim;Chang-Ho Kang;Jee-Young Imm
    • Food Science of Animal Resources
    • /
    • v.43 no.1
    • /
    • pp.157-169
    • /
    • 2023
  • Effects of culture supernatants of Lactobacillus reuteri MG5346 (CS-MG5346) on receptor activator of nuclear factor-kappa B ligand (RANKL)-induced osteoclastogenesis were examined. CS-MG5346 treatment up to 400 ㎍/mL significantly reduced tartrate-resistant acid-phosphatase (TRAP) activity, the phenotype biomarker of osteoclast, without affecting cell viability. CS-MG5346 inhibited the expression of osteoclast specific transcriptional factors (c-fos and nuclear factor-activated T cells c1) and their target genes (TRAP, cathepsin, and matrix metallo-proteinase-9) in a dose-dependent manner (p<0.05). The administration of L. reuteri MG5346 (2×108 CFU/day) for 8 wks significantly improved furcation involvement, but no difference was observed in alveolar bone loss in ligature-induced experimental periodontitis rats. The elevated RANKL/osteoprotegerin ratio, the biomarker of periodontitis, was significantly lowered in the gingival tissue by administration of L. reuteri MG5346 (p<0.05). L. reuteri MG5346 showed excellent stability in simulated stomach and intestinal fluids and did not have antibiotic resistance. Based on the results, L. reuteri MG5346 has the potential to be a promising probiotic strain for oral health.

The Effects of Cuscuta japonica Chois on Gene Expression in RANKL-induced RAW 264.7 Cell (도사자(菟絲子)가 RANKL 유도 파골세포(破骨細胞)에 미치는 영향)

  • Kim, Joon-Yeon;Hwang, Gwi-Seo
    • Journal of Society of Preventive Korean Medicine
    • /
    • v.14 no.2
    • /
    • pp.77-89
    • /
    • 2010
  • Objectives : This study was performed to evaluate the effect of CJ(Cuscuta japonica Chois) on osteoclast differentiation and gene expression. Methods : The osteoclastogenesis and gene expression were determined in RANKL(receptor activator of nuclear factor kappa B ligand)-stimulated RAW 264.7. The results were summarized as followes. Results : CJ decreased the number of TRAP positive cell in RANKL-stimulated RAW264.7 cell. CJ decreased the expression of RANK(receptor activator of nuclear factor kappa B), $TNF{\alpha}$, and IL-6 in RANKL-stimulated RAW264.7 cell. CJ decreased the expression of iNOS and COX-2 in RANKL-stimulated RAW264.7 cell. CJ decreased the expression of Cathepsin K in RANKL-stimulated RAW264.7 cell. Conclusions : It is concluded that CJ might decrease the bone resorption resulted from decrease of osteoclast differentiation and it's related gene expression.

Receptor activator of nuclear factor-κB ligand in T cells and dendritic cells communication

  • Nam, Sun-Young;Jeong, Hyun-Ja
    • CELLMED
    • /
    • v.3 no.1
    • /
    • pp.3.1-3.3
    • /
    • 2013
  • The receptor activator of NF-${\kappa}B$ ligand (RANKL), a member of the tumor necrosis factor ligand family, has extensive functions beyond osteoclast development. RANKL is expressed in many immune cells such as osteoblasts, osteocytes, marrow stromal cells, activated T cells, synovial cells, keratinocytes, and mammary gland epithelial cells as well as in various tissues. The ligation of RANK by RANKL promotes dendritic cells (DCs) survival through prosurvival signals and the up-regulation of the anti-apoptotic proteins Bcl-2 and Bcl-$x_L$ and plays a crucial role in DCs-mediated Th1 differentiation. Therefore, RANKL plays an important role in the regulation of DCs/T cells-mediated specific immunity. This review will briefly inform our current understanding of the role of RANKL signaling in T cells-DCs communication in the immune system.

RANK Signaling Pathways and Key Molecules Inducing Osteoclast Differentiation

  • Lee, Na Kyung
    • Biomedical Science Letters
    • /
    • v.23 no.4
    • /
    • pp.295-302
    • /
    • 2017
  • Mononuclear osteoclast precursors derived from hematopoietic progenitors fuse together and then become multinucleated mature osteoclasts by macrophage-colony stimulating factor (M-CSF) and receptor activator of nuclear factor-${\kappa}B$ ligand (RANKL). Especially, the binding of RANKL to its receptor RANK provides key signals for osteoclast differentiation and bone-resorbing function. RANK transduces intracellular signals by recruiting adaptor molecules such as TNFR-associated factors (TRAFs), which then activate mitogen activated protein kinases (MAPKs), Src/PI3K/Akt pathway, nuclear factor-${\kappa}B$ (NF-${\kappa}B$) and finally amplify NFATc1 activation for the transcription and activation of osteoclast marker genes. This review will briefly describe RANKL-RANK signaling pathways and key molecules critical for osteoclast differentiation.

Therapeutic effect of Shinkiwhan, herbal medicine, regulates OPG/RANKL/RANK system on ovariectomy-induced bone loss rat

  • Seo, Il-bok;Lee, Kang Pa;Park, Sun-young;Ahn, Sang-hyun
    • Korean Journal of Exercise Nutrition
    • /
    • v.24 no.3
    • /
    • pp.19-24
    • /
    • 2020
  • [Purpose] Although physical activity is required to prevent or ameliorate osteoporosis, medicine prescription should precede it, since it may be limited in severe osteoporosis patients. Furthermore, osteoporosis has a great effect on physical activity disorders that accompany fractures and pain, and therefore, research on treatment or prevention to decrease the number of patients is required. The purpose of this study was to discover candidate substances from natural products with an effective pharmacological action and to prepare basic data to help patients. [Methods] To prepare the osteoporosis model, ovariectomy (OVX) was performed using surgical methods. The prepared prescription [Shinkiwhan (SKH), a Korean medicine] was administered orally at a dose of 210 mg/kg/day for 8 weeks. After completion of the animal experiment, the bone mineral density (BMD) was analyzed using double-energy X-ray absorptiometry. The analysis of the effect of drugs on bones was performed using histological analysis and immunostaining. [Results] SKH increased the BMD in the OVX rats. Furthermore, SKH significantly increased the expression of osteoprotegerin and downregulated receptor activator of nuclear factor kappa B ligand and phosphorylation of c-jun N-terminal kinases in the bones of the OVX model. [Conclusion] Our findings suggest a protective effect of SKH against BMD loss in the OVX model.