DOI QR코드

DOI QR Code

Humanin suppresses receptor activator of nuclear factor-κB ligand-induced osteoclast differentiation via AMP-activated protein kinase activation

  • Kang, Namju (Department of Oral Biology, BK21 PLUS Project, Yonsei University College of Dentistry) ;
  • Kim, Ki Woo (Department of Oral Biology, BK21 PLUS Project, Yonsei University College of Dentistry) ;
  • Shin, Dong Min (Department of Oral Biology, BK21 PLUS Project, Yonsei University College of Dentistry)
  • Received : 2019.07.12
  • Accepted : 2019.07.30
  • Published : 2019.09.01

Abstract

Humanin (HN) is a mitochondrial peptide that exhibits cytoprotective actions against various stresses and diseases. HN has been shown to induce the phosphorylation of AMP-activated protein kinase (AMPK), which is a negative regulator of receptor activator of nuclear factor-${\kappa}B$ ligand (RANKL). However, the role of HN in osteoclastogenesis or other skeletal disorders remains unknown. Here, we examined whether HN regulates osteoclastogenesis via AMPK activation using bone marrow-derived macrophage (BMM) cultures. Our results show that HN inhibited RANKL-induced osteoclast formation and reduced the expression of genes involved in osteoclastogenesis, including nuclear factor of activated T-cells cytoplasmic 1, osteoclastassociated receptor, cathepsin K, and tartrate-resistant acid phosphatase. Moreover, HN increased the levels of phosphorylated AMPK protein; compound C, an AMPK inhibitor, recovered HN-induced osteoclast differentiation. In addition, we found that HN significantly decreased the levels of RANKL-induced reactive oxygen species in BMMs. Therefore, these results indicate that HN plays an important role in osteoclastogenesis and may function as an inhibitor of bone disorders via AMPK activation.

Keywords

References

  1. Datta HK, Ng WF, Walker JA, Tuck SP, Varanasi SS. The cell biology of bone metabolism. J Clin Pathol. 2008;61:577-587. https://doi.org/10.1136/jcp.2007.048868
  2. Charles JF, Aliprantis AO. Osteoclasts: more than 'bone eaters'. Trends Mol Med . 2014;20:449-459. https://doi.org/10.1016/j.molmed.2014.06.001
  3. Erkhembaatar M, Gu DR, Lee SH, Yang YM, Park S, Muallem S, Shin DM, Kim MS. Lysosomal $Ca^{2+}$ signaling is essential for osteoclastogenesis and bone remodeling. J Bone Miner Res. 2017;32:385-396. https://doi.org/10.1002/jbmr.2986
  4. Florencio-Silva R, Sasso GR, Sasso-Cerri E, Simoes MJ, Cerri PS. Biology of bone tissue: structure, function, and factors that influence bone cells. Biomed Res Int. 2015;2015:421746.
  5. Teitelbaum SL. Bone resorption by osteoclasts. Science. 2000;289:1504-1508. https://doi.org/10.1126/science.289.5484.1504
  6. Mihaylova MM, Shaw RJ. The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat Cell Biol. 2011;13:1016-1023. https://doi.org/10.1038/ncb2329
  7. Jeyabalan J, Shah M, Viollet B, Chenu C. AMP-activated protein kinase pathway and bone metabolism. J Endocrinol. 2012;212:277-290. https://doi.org/10.1530/JOE-11-0306
  8. Lee YS, Kim YS, Lee SY, Kim GH, Kim BJ, Lee SH, Lee KU, Kim GS, Kim SW, Koh JM. AMP kinase acts as a negative regulator of RANKL in the differentiation of osteoclasts. Bone. 2010;47:926-937. https://doi.org/10.1016/j.bone.2010.08.001
  9. Ming W, Lu G, Xin S, Huanyu L, Yinghao J, Xiaoying L, Chengming X, Banjun R, Li W, Zifan L. Mitochondria related peptide MOTS-c suppresses ovariectomy-induced bone loss via AMPK activation. Biochem Biophys Res Commun. 2016;476:412-419. https://doi.org/10.1016/j.bbrc.2016.05.135
  10. Hashimoto Y, Niikura T, Tajima H, Yasukawa T, Sudo H, Ito Y, Kita Y, Kawasumi M, Kouyama K, Doyu M, Sobue G, Koide T, Tsuji S, Lang J, Kurokawa K, Nishimoto I. A rescue factor abolishing neuronal cell death by a wide spectrum of familial Alzheimer's disease genes and Abeta. Proc Natl Acad Sci U S A. 2001;98:6336-6341. https://doi.org/10.1073/pnas.101133498
  11. Qin Q, Jin J, He F, Zheng Y, Li T, Zhang Y, He J. Humanin promotes mitochondrial biogenesis in pancreatic MIN6 ${\beta}$-cells. Biochem Biophys Res Commun. 2018;497:292-297. https://doi.org/10.1016/j.bbrc.2018.02.071
  12. Lee C, Yen K, Cohen P. Humanin: a harbinger of mitochondrialderived peptides? Trends Endocrinol Metab. 2013;24:222-228. https://doi.org/10.1016/j.tem.2013.01.005
  13. Zhang Z, Welte T, Troiano N, Maher SE, Fu XY, Bothwell AL. Osteoporosis with increased osteoclastogenesis in hematopoietic cellspecific STAT3-deficient mice. Biochem Biophys Res Commun. 2005;328:800-807. https://doi.org/10.1016/j.bbrc.2005.01.019
  14. Gidlund EK, von Walden F, Venojarvi M, Riserus U, Heinonen OJ, Norrbom J, Sundberg CJ. Humanin skeletal muscle protein levels increase after resistance training in men with impaired glucose metabolism. Physiol Rep. 2016;4:e13063. https://doi.org/10.14814/phy2.13063
  15. Widmer RJ, Flammer AJ, Herrmann J, Rodriguez-Porcel M, Wan J, Cohen P, Lerman LO, Lerman A. Circulating humanin levels are associated with preserved coronary endothelial function. Am J Physiol Heart Circ Physiol. 2013;304:H393-H397. https://doi.org/10.1152/ajpheart.00765.2012
  16. Lee NK, Choi YG, Baik JY, Han SY, Jeong DW, Bae YS, Kim N, Lee SY. A crucial role for reactive oxygen species in RANKL-induced osteoclast differentiation. Blood. 2005;106:852-859. https://doi.org/10.1182/blood-2004-09-3662
  17. Kim MS, Yang YM, Son A, Tian YS, Lee SI, Kang SW, Muallem S, Shin DM. RANKL-mediated reactive oxygen species pathway that induces long lasting $Ca^{2+}$ oscillations essential for osteoclastogenesis. J Biol Chem. 2010;285:6913-6921. https://doi.org/10.1074/jbc.M109.051557
  18. Sreekumar PG, Hinton DR, Kannan R. Endoplasmic reticulummitochondrial crosstalk: a novel role for the mitochondrial peptide humanin. Neural Regen Res. 2017;12:35-38. https://doi.org/10.4103/1673-5374.198970
  19. Liu X, Chhipa RR, Nakano I, Dasgupta B. The AMPK inhibitor compound C is a potent AMPK-independent antiglioma agent. Mol Cancer Ther. 2014;13:596-605. https://doi.org/10.1158/1535-7163.MCT-13-0579
  20. Matsuoka M, Hashimoto Y. Humanin and the receptors for humanin. Mol Neurobiol. 2010;41:22-28. https://doi.org/10.1007/s12035-009-8090-z
  21. Ikonen M, Liu B, Hashimoto Y, Ma L, Lee KW, Niikura T, Nishimoto I, Cohen P. Interaction between the Alzheimer's survival peptide humanin and insulin-like growth factor-binding protein 3 regulates cell survival and apoptosis. Proc Natl Acad Sci U S A. 2003;100:13042-13047. https://doi.org/10.1073/pnas.2135111100
  22. Yang YM, Kim MS, Son A, Hong JH, Kim KH, Seo JT, Lee SI, Shin DM. Alteration of RANKL-induced osteoclastogenesis in primary cultured osteoclasts from $SERCA2^{+/-}$ mice. J Bone Miner Res. 2009;24:1763-1769. https://doi.org/10.1359/jbmr.090420
  23. Boyle WJ, Simonet WS, Lacey DL. Osteoclast differentiation and activation. Nature. 2003;423:337-342. https://doi.org/10.1038/nature01658
  24. Feng X, Teitelbaum SL. Osteoclasts: new insights. Bone Res. 2013;1:11-26. https://doi.org/10.4248/BR201301003
  25. Teitelbaum SL. Osteoclasts, integrins, and osteoporosis. J Bone Miner Metab. 2000;18:344-349. https://doi.org/10.1007/s007740070007
  26. Boyce BF, Xing L. Functions of RANKL/RANK/OPG in bone modeling and remodeling. Arch Biochem Biophys. 2008;473:139-146. https://doi.org/10.1016/j.abb.2008.03.018
  27. Son A, Kim MS, Jo H, Byun HM, Shin DM. Effects of inositol 1,4,5-triphosphate on osteoclast differentiation in RANKL-induced osteoclastogenesis. Korean J Physiol Pharmacol. 2012;16:31-36. https://doi.org/10.4196/kjpp.2012.16.1.31
  28. Takayanagi H, Kim S, Koga T, Nishina H, Isshiki M, Yoshida H, Saiura A, Isobe M, Yokochi T, Inoue J, Wagner EF, Mak TW, Kodama T, Taniguchi T. Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev Cell. 2002;3:889-901. https://doi.org/10.1016/S1534-5807(02)00369-6
  29. Park B, Yang YM, Choi BJ, Kim MS, Shin DM. Activation of G proteins by aluminum fluoride enhances RANKL-mediated osteoclastogenesis. Korean J Physiol Pharmacol. 2013;17:427-433. https://doi.org/10.4196/kjpp.2013.17.5.427
  30. Kim JH, Kim N. Regulation of NFATc1 in osteoclast differentiation. J Bone Metab. 2014;21:233-241. https://doi.org/10.11005/jbm.2014.21.4.233
  31. Sharma SM, Bronisz A, Hu R, Patel K, Mansky KC, Sif S, Ostrowski MC. MITF and PU.1 recruit p38 MAPK and NFATc1 to target genes during osteoclast differentiation. J Biol Chem. 2007;282:15921-15929. https://doi.org/10.1074/jbc.M609723200
  32. Takayanagi H. The role of NFAT in osteoclast formation. Ann N Y Acad Sci. 2007;1116:227-237. https://doi.org/10.1196/annals.1402.071
  33. Saito Y, Chapple RH, Lin A, Kitano A, Nakada D. AMPK protects leukemia-initiating cells in myeloid leukemias from metabolic stress in the bone marrow. Cell Stem Cell. 2015;17:585-596. https://doi.org/10.1016/j.stem.2015.08.019
  34. Kim J, Yang G, Kim Y, Kim J, Ha J. AMPK activators: mechanisms of action and physiological activities. Exp Mol Med. 2016;48:e224. https://doi.org/10.1038/emm.2016.16
  35. Shackelford DB, Shaw RJ. The LKB1-AMPK pathway: metabolism and growth control in tumour suppression. Nat Rev Cancer. 2009;9:563-575. https://doi.org/10.1038/nrc2676
  36. Hardie DG. AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nat Rev Mol Cell Biol. 2007;8:774-785. https://doi.org/10.1038/nrm2249
  37. Kanazawa I, Yamaguchi T, Yano S, Yamauchi M, Yamamoto M, Sugimoto T. Adiponectin and AMP kinase activator stimulate proliferation, differentiation, and mineralization of osteoblastic MC3T3-E1 cells. BMC Cell Biol. 2007;8:51. https://doi.org/10.1186/1471-2121-8-51
  38. Jang WG, Kim EJ, Bae IH, Lee KN, Kim YD, Kim DK, Kim SH, Lee CH, Franceschi RT, Choi HS, Koh JT. Metformin induces osteoblast differentiation via orphan nuclear receptor SHP-mediated transactivation of Runx2. Bone. 2011;48:885-893. https://doi.org/10.1016/j.bone.2010.12.003

Cited by

  1. Humanin: A mitochondrial-derived peptide in the treatment of apoptosis-related diseases vol.264, 2019, https://doi.org/10.1016/j.lfs.2020.118679
  2. Isovaleric acid ameliorates ovariectomy‐induced osteoporosis by inhibiting osteoclast differentiation vol.25, pp.9, 2019, https://doi.org/10.1111/jcmm.16482