• Title/Summary/Keyword: rebar inspection

Search Result 127, Processing Time 0.02 seconds

A Framework for Automated Formwork Quality Inspection using Laser Scanning and Augmented Reality

  • Chi, Hung-lin;Kim, Min-Koo;Thedja, Julian
    • International conference on construction engineering and project management
    • /
    • 2020.12a
    • /
    • pp.13-22
    • /
    • 2020
  • Reinforcement steel fixing is a skilled and manually intensive construction trade. Current practice for the quality assessment of reinforcement steel fixing is normally performed by fabricators and has high potential in having errors due to the tedious nature of the work. In order to overcome the current inspection limitation, this study presents an approach that provides visual assistance and inspection enhancement for inspectors to assess the dimensional layout of reinforcement steel fixing. To this end, this study aims to establish an end-to-end framework for rebar layout quality inspection using laser scanning and Augmented Reality (AR). The proposed framework is composed of three parts: (1) the laser-scanned rebar data processing; (2) the rebar inspection procedure integrating with AR; and (3) the checking and fixing the rebar layout through AR visualization. In order to investigate the feasibility of the proposed framework, a case study assessing the rebar layout of a lab-scaled formwork containing two rebar layers is conducted. The results of the case studies demonstrate that the proposed approach using laser scanning and AR has the potential to produce an intuitive and accurate quality assessment for the rebar layout.

  • PDF

Rebar Spacing Fixing Technology using Laser Scanning and HoloLens

  • Lee, Yeongjoo;Kim, Jeongseop;Lee, Jin Gang;Kim, Minkoo
    • Korean Journal of Construction Engineering and Management
    • /
    • v.25 no.2
    • /
    • pp.69-80
    • /
    • 2024
  • Currently rebar spacing inspection is carried out by human inspectors who heavily rely on their individual experience, lacking a guarantee of objectivity and accuracy in the inspection process. In addition, if incorrectly placed rebars are identified, the inspector need to correct them. Recently, laser scanning and AR technologies have been widely used because of their merits of measurement accuracy and visualization. This study proposes a technology for rebar spacing inspection and fixing by combining laser scanning and AR technology. First, scan data acquisition of rebar layers is performed and the raw scan data is processed. Second, AR-based visualization and fixing are performed by comparing the design model with the model generated from the scan data. To verify the developed technique, performance comparison test is conducted by comparing with existing drawing-based method in terms of inspection time, error detection rate, cognitive load, and situational awareness ability. It is found from the result of the experiment that the AR-based rebar inspection and fixing technology is faster than the drawing-based method, but there was no significant difference between the two groups in error identification rate, cognitive load, and situational awareness ability. Based on the experimental results, the proposed AR-based rebar spacing inspection and fixing technology is expected to be highly useful throughout the construction industry.

A Study on Application of Automated Inspection System for Rebar Inspection using 3D Scanner (3D 스캐너를 활용한 철근 자동검측방식의 현장적용성 연구)

  • Lim, Hyun-Su;Kim, Tae-Hoon;Lee, Myung-Do;Kim, Chang-Won;Cha, Min-Su
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.157-158
    • /
    • 2019
  • Reinforcing bars are an important material for tensile strength of structures. For this reason, the inspection of the reinforcing bars confirming the layout and omission is very important for the safety of the structures. However, the current method of inspecting of the reinforcing bars through photographs of specific areas is difficult to identify condition all reinforcing bars. And It is also difficult to confirm after completion of a building. Therefore, reinforcing bar inspection using 3D scanner is required for automation of rebar inspection and database construction. For this purpose, this study test application of automated inspection method for rebar inspection using 3D scanner and discuss the effect of this method.

  • PDF

Quality Inspection Scheme for Rebar Work Using 3D Scanning Technology (3D 스캐닝을 활용한 철근공사 품질점검 방안)

  • Kim, Ju-Yong;Park, Ji-Yeong;Lee, Don-Soo;Lee, Young-Do;Kim, Gwang-Hee
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.214-215
    • /
    • 2020
  • The 3D scanning technology is being introduced for quality inspection of building construction. Therefore, this study tried to confirm whether it is possible to check the quality of rebar by using 3D scanning. After rebar placed on the formwork slab was scanned with a 3D scanner, the rebar spacing was confirmed by overlapping with the CAD drawing. As a result, the 3D scanner was able to check the quality of rebar work on one floor at a time. Therefore, 3D scanning could be used for quality inspection of rebar works such as columns, beam and girders, walls, and slabs in the future.

  • PDF

Current Status on Durability of 140 RC Bridges in Seoul Metropolitan Area (서울시내 140개 철근콘크리트 교량의 내구성 현황 분석)

  • Lee, Chang-Soo;Seol, Jin-Sung;Yoon, ln-Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.4 no.3
    • /
    • pp.161-168
    • /
    • 2000
  • A series of in-situ inspection and measurements have been conducted to estimate rebar corrosion incidence of concrete bridges in Seoul metropolitan area. The objectives of this study were to obtain the fundamental data to analysis the causes of rebar corrosion and to establish the repair strategies of deteriorated concrete bridges due to corrosion. The results of this study had been analysed to identify the extent of chloride content and incidence of rebar corrosion by construction ages and by members. After measuring chloride content in concrete, it was concluded that about 76% of all tests on samples from concrete exceed the maximum acceptable limit to risk of chloride-induced corrosion. On the whole, slabs had the most highly chloride content. About 16% of the concrete bridges had a value lower than -350mV (vs. CSE), so it could concluded that the excessive chloride content and carbonation were a major causes of rebar corrosion. Concrete member which carbonation depth penetrates toward rebar was 39% among all tests on samples. The major causes of rebar corrosion were highly chloride content 50%, concrete carbonation 38%, poorly visual condition 6% and etc, 6%.

  • PDF

Check Method of Rebar Placing Status Using 3D Scanning Technology (3D 스캐닝을 활용한 철근배근 간격 확인)

  • Kim, Ju yong;Park, Ji Yoeng;Kim, Chae Won;Lee, Young Do;Kim, Gwang Hee
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.253-254
    • /
    • 2021
  • In the field of construction, research on smart construction technology is being actively pursued as a measure to increase productivity and efficiency. The technology that links 3D scanning and BIM of smart construction technology is in the limelight as a technology for checking the state of buildings in the field of architecture. It is thought that these techniques will be of great help in solving problems when the amount of inspection targets is large, such as confirmation of the rebar arrangement intervals, and therefore a large number of human resources are required. Therefore, in this study, we would like to apply 3D scanning to rebar construction to confirm whether the rebar arrangement can be confirmed according to the design drawing. In the study, the wall rebar of the rebar placed at the actual construction site was directly scanned to extract data, and the rebar placing status was confirmed through type analysis. As a result of analyzing the reinforcing bar arrangement state based on the data obtained by 3D scanning, it was found that the technology can be utilized.

  • PDF

Examination on the influence of Depth, Size and Interval of Rebar on the Signal of Ground Penetrating Radar (철근의 깊이, 굵기 및 간격이 GPR 신호에 미치는 영향 조사)

  • Kim, Young-Joo;Lee, Seung-Seok;Ahn, Bong-Young;Kim, Young-Gil
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.4 no.2
    • /
    • pp.167-174
    • /
    • 2000
  • Ground penetrating radar(GPR) was applied for measuring depths, sizes and intervals of rebars embedded in concrete. A concrete wall was constructed for this study and a sand pool and a concrete block were used for simulation. Result of this study shows that GPR can be used for measuring rebar depths and intervals, even though it is limitary, but that measuring sizes is almost impossible. Simulation with the sand pool was helpful for research on the versatile rebar arrays though signal was not clear as real concrete wall. A concrete block with many cylindrical holes for inserting different sized rebars could not be used for simulator due to many unknown reflective waves. Antenna orientation must be perpendicular to rebars for large reflection signal.

  • PDF

Mechanical Performance Evaluation of Rolling Thread Steel Rebar Connection with Taper type Coupler (변단면 전조 가공 철근이음 연결방법의 성능 평가)

  • Jeong, Jin-Hwan;Kim, In-Tae;Kim, Tae-Jin;Lee, Myung-Jin;Ahn, Jin-Hee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.2
    • /
    • pp.40-51
    • /
    • 2015
  • In reinforced concrete structure, rebar connection method should be considered because of its structural role to resist the tensile stress and its structural load transmission with concrete in the concrete structure. Lapped splice and mechanical sleeve type connector have been traditionally used to connect rebar in the concrete structures. In this study, to examine the mechanical and failure behaviors of rebar bar connected by taper type coupler in the concrete member depending on connection type and condition, tensile tests of steel rebar with taper type coupler and flexible loading tests of concrete beams were conducted. Its tensile strength and flexible strength of the rebar connected by taper type coupler were compared and evaluated by mechanical behaviors of rebar. From this study, steel rebar connected by taper type coupler showed it has similar mechanical performance comparing with unconnected rebar, thus taper type coupler can be used in the rebar fabrication of reinforced concrete structure.

Characteristics of Bond Strength in Concrete Beams Reinforced with Galvanized Rebar (용융아연도금 철근콘크리트 보의 부착강도 특성)

  • Shin, Jae-Hyuk;Kim, Kyoung-Chul;Yang, In-Hwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.4
    • /
    • pp.136-143
    • /
    • 2015
  • Galvanizing is one of the method used to solve the problem of corrosion of reinforcement in concrete structures. There few research reported in the literature regarding the effect of galvanized coating on the behavior of lap splices in concrete beams. The objective of this study was to determine whether galvanized rebar adversely affects lap splice behavior and bond strength. Concrete beams reinforced with black or galvanized rebar were tested in flexure. The test variables included the presence of galvanized rebar steel diameter, and lengths of lap splices. The study concentrated on comparing crack, failure pattern, and bond strength. The ultimate behavior of beams reinforced with galvanized rebar was not significantly different from that of black steel reinforced beams. Therefore, the test results indicated that the use of galvanizing-coated rebar had no adverse effect on behavior in lap splices of rebar compared to the use of black rebar.

Enhancements in Performance and Manufacturing Efficiencies of GFRP Rebar (GFRP 보강근의 성능 및 제작 효율화 방안)

  • You, Young Jun;Kim, Jang Ho;Park, Young Hwan;Park, Ji Sun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.1
    • /
    • pp.110-119
    • /
    • 2012
  • Fiber reinforced polymer (FRP) reinforcing rebar with non-corrosive property is suggested as an alternative replacement to steel reinforcing rebar due to its enhanced durability and non-corrosive characteristics. Currently, a limited number of glass fiber reinforced polymer rebar (GFRP) are sold commercially due to their high cost, relatively low performances, and brittle failure characteristics. Therefore, the performance enhancements and cost reduction of GFRP rebar are needed to increase its applications in construction fields. The intent of this study is to develop high performance GFRP rebar by improving its tensile and shear properties. Also, in order to reduce manufacturing costs, factors such as material composition and manufacturing process were evaluated to improve manufacturing efficiency. Finally a GFRP rebar with enhanced material properties and less expensive than the GFRP rebar currently sold in the market was manufactured and evaluated for its application possibility in construction fields.