• Title/Summary/Keyword: reanalysis data

Search Result 243, Processing Time 0.02 seconds

Perspective of East Asian Reanalysis Data Production (동아시아 지역재분석자료 생산의 전망)

  • Park, Sang-Jong;Choi, Yong-Sang
    • Atmosphere
    • /
    • v.21 no.2
    • /
    • pp.173-183
    • /
    • 2011
  • Production of reanalysis data is important since it contributes to develop all fields of atmospheric sciences and to profit national economy. The developed countries such as USA, EU, and Japan have manufactured the global reanalysis data since the 1990s, but their data present a lack of detailed regional climates. For those who need to analyze the regional climate in/around Korea, a high-resolution reanalysis data should essentially be made. This study reviewed the existing reanalysis data and the applications, and the available observations for the data production. We also investigated the opinions and needs of the potential data users in Korea. We suggest the specifications of the data to have the domain of 55-5N, 80-150E (which includes Mongolia and most Southeast Asian countries), the spatial resolution of 10-20 km, and the period of most recent 30 years. With the specifications and climate models operated in KMA, this study argues that production of the reanalysis data with functional climate information is feasible in both technical and economic aspects. Finally, for successful data production, the framework of the future reanalysis data project was suggested.

Reliability assessment of ERA-Interim/MERRA reanalysis data for the offshore wind resource assessment (해상풍력자원 평가를 위한 ERA-Interim/MERRA 재해석 데이터 신뢰성 평가)

  • Byun, Jong-Ki;Son, Jin-Hyuk;Ko, Kyung-Nam
    • Journal of Power System Engineering
    • /
    • v.20 no.4
    • /
    • pp.44-51
    • /
    • 2016
  • An investigation on reliability of reanalysis wind data was conducted using the met mast wind data at four coastal regions, Jeju Island. Shinchang, Handong, Udo and Gangjeong sites were chosen for the met mast sites, and ERA-Interim and MERRA reanalysis data at two points on the sea around Jeju Island were analyzed for creating Wind Statistics of WindPRO software. Reliability of reanalysis wind data was assessed by comparing the statistics from the met mast wind data with those from Wind Statistics of WindPRO software. The relative error was calculated for annual average wind speed, wind power density and annual energy production. In addition, Weibull wind speed distribution and monthly energy production were analyzed in detail. As a result, ERA-Interim reanalysis data was more suitable for wind resource assessment than MERRA reanalysis data.

Estimation of Extreme Wind Speeds in the Western North Pacific Using Reanalysis Data Synthesized with Empirical Typhoon Vortex Model (모조 태풍 합성 재분석 바람장을 이용한 북서태평양 극치 해상풍 추정)

  • Kim, Hye-In;Moon, Il-Ju
    • Ocean and Polar Research
    • /
    • v.43 no.1
    • /
    • pp.1-14
    • /
    • 2021
  • In this study, extreme wind speeds in the Western North Pacific (WNP) were estimated using reanalysis wind fields synthesized with an empirical typhoon vortex model. Reanalysis wind data used is the Fifth-generation European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis (ERA5) data, which was deemed to be the most suitable for extreme value analysis in this study. The empirical typhoon vortex model used has the advantage of being able to realistically reproduce the asymmetric winds of a typhoon by using the gale/storm-forced wind radii information in the 4 quadrants of a typhoon. Using a total of 39 years of the synthesized reanalysis wind fields in the WNP, extreme value analysis is applied to the General Pareto Distribution (GPD) model based on the Peak-Over-Threshold (POT) method, which can be used effectively in case of insufficient data. The results showed that the extreme analysis using the synthesized wind data significantly improved the tendency to underestimate the extreme wind speeds compared to using only reanalysis wind data. Considering the difficulty of obtaining long-term observational wind data at sea, the result of the synthesized wind field and extreme value analysis developed in this study can be used as basic data for the design of offshore structures.

Application of ERA-Interim Reanalysis Data for Onshore and Offshore Wind Resource Assessment (육·해상 풍력자원평가를 위한 ERA-Interim 재해석 데이터의 적용)

  • Byun, Jong-Ki;Ko, Kyung-Nam
    • Journal of the Korean Solar Energy Society
    • /
    • v.37 no.2
    • /
    • pp.1-11
    • /
    • 2017
  • The investigation on reliability of ERA-Interim reanalysis wind data was conducted using wind data from the five met masts measured at inland and coastal areas, Jeju island. Shinchang, Handong, Udo, Susan and Cheongsoo sites were chosen for the met mast location. ERA-Interim reanalysis data at onshore and offshore twenty points over Jeju Island were analyzed for creating Wind Statistics using WindPRO software. Reliability of ERA-Interim reanalysis wind data was assessed by comparing the statistics from the met mast wind data with those predicted at the interest point using the Wind Statistics. The relative errors were calculated for annual average wind speed and annual energy production. In addition, the trend of the error was analyzed with distance from met mast. As a result, ERA-Interim reanalysis wind data was more suitable for offshore wind resource assessment than onshore.

Characteristic Variations of Upper Jet Stream over North-East Asian Region during the Recent 35 Years (1979~2013) Based on Four Reanalysis Datasets (재분석자료들을 이용한 최근 35년(1979~2013) 동북아시아 상층제트의 변동특성)

  • So, Eun-Mi;Suh, Myoung-Seok
    • Atmosphere
    • /
    • v.25 no.2
    • /
    • pp.235-248
    • /
    • 2015
  • In this study, we analyzed the three dimensional variations (latitude, longitude, and height of Jet core) and wind speed of upper Jet stream in the East Asian region using recent 35 years (1979~2013) of four reanalysis data (NCEP-R2, MERRA, ERA-Interim. and JRA-55). Most of Jet core is located in $30.0{\sim}37.5^{\circ}N$ and $13.0{\sim}157.5^{\circ}E$ although there are slight differences among the four reanalysis data. The wind speed differences among reanalysis are about $3m\;s^{-1}$ regardless of seasons, the weakest in NCEP-R2 and the strongest in JRA-55. Although significance level is not high, most of reanalysis showed that the Jet core has a tendency of southward moving during spring and winter, but moving northward during summer and fall. This amplified seasonal variation of Jet core suggests that seasonal variations of weather/climate can be increased in the East Asian region. The longitude of Jet core has a tendency of systematically westward moving and decreasing of zonal variations regardless of averaging methods and reanalysis data. In general, the Jet core shows a tendency of moving south-west-ward and upward, getting intensified during spring and winter regardless of the reanalysis data. However, the Jet core shows a tendency of moving westward and downward, and getting weakened during summer. In fall, there were no distinctive trends not only in wind speed but also three dimensional locations compared to other seasons. Although the significance levels are not high and variation patterns are slightly different according to the reanalysis data, our findings are more or less different from the previous results. So, more works are needed to clarify the three dimensional variation patterns of Jet core over the East Asian region as a result of global warming.

Steric Sea Level Variability in the East Asian Seas estimated from Ocean Reanalysis Intercomparison Project Data

  • Chang, You-Soon;Kang, Min-Ji
    • Journal of the Korean earth science society
    • /
    • v.40 no.5
    • /
    • pp.487-501
    • /
    • 2019
  • In this study, steric height variability in the East Asian Seas (EAS) has been analyzed by using ocean reanalysis intercomparison project (ORA-IP) data. Results show that there are significant correlations between ocean reanalysis and satellite data except the phase of annual cycle and interannual signals of the Yellow Sea. Reanalysis ensemble derived from 15-different assimilation systems depicts higher correlation (0.706) than objective analysis ensemble (0.296) in the EAS. This correlation coefficient is also much higher than that of the global ocean (0.441). For the long-term variability of the thermosteric sea level during 1993-2010, a significant warming trend is found in the East/Japan Sea, while cooling trend is shown around the Kuroshio extension area. For the halosteric sea level, a dominant freshening trend is found in the EAS. However, below 300 m depth around this area, the signal-to-noise ratio of the linear trend is generally less than one, which is related to the low density of observation data.

Evaluation of the Total Column Ozone in the Reanalysis Datasets over East Asia (동아시아 지역 오존 전량 재분석 자료의 검증)

  • Han, Bo-Reum;Oh, Jiyoung;Park, Sunmin;Son, Seok-Woo
    • Atmosphere
    • /
    • v.29 no.5
    • /
    • pp.659-669
    • /
    • 2019
  • This study assesses the quality of the total column ozone (TCO) data from five reanalysis datasets against nine independent observation in East Asia. The assessed datasets are the ECMWF Interim reanalysis (ERAI), Monitoring Atmosphere Composition and Climate reanalysis (MACC), Copernicus Atmosphere Monitoring Service reanalysis (CAMS), the NASA Modern-Era Retrospective analysis for Research and Applications, Version2 (MERRA2), and NCEP Climate Forecast System Reanalysis (CFSR). All datasets reasonably well capture the spatial distribution, annual cycle and interannual variability of TCO in East Asia. In particular, characteristics of TCO according to the latitude difference were similar at all points with a maximum bias of less than about 4%. Among them, CAMS and CFSR show the smallest mean bias and root-mean square error across all nine ground-based observations. This result indicates that while TCO data in modern reanalyses are reasonably good, CAMS and CFSR TCO data are the best for analysing the spatio-temporal variability and change of TCO in East Asia.

Accuracy evaluation of near-surface air temperature from ERA-Interim reanalysis and satellite-based data according to elevation

  • Ryu, Jae-Hyun;Han, Kyung-Soo;Park, Eun-Bin
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.6
    • /
    • pp.595-600
    • /
    • 2013
  • In order to spatially interpolate the near-surface temperature (Ta) values, satellite and reanalysis methods were used from previous studies. Accuracy of reanalysis Ta was generally better than that of satellite-based Ta, but spatial resolution of reanalysis Ta was large to use at local scale studies. Our purpose is to evaluate accuracy of reanalysis Ta and satellite-based Ta according to elevation from April 2011 to March 2012 in Northeast Asia that includes various topographic features. In this study, we used reanalysis data that is ERA-Interim produced by European Centre for Medium-Range Weather Forecasts (ECMWF), and estimated satellite-based Ta using Digital Elevation Meter (DEM), Normalized Difference Vegetation Index (NDVI), difference between brightness temperature of $11{\mu}m$ and $12{\mu}m$, and Land Surface Temperature (LST) data. The DEM data was used as auxiliary data, and observed Ta at 470 meteorological stations was used in order to evaluate accuracy. We confirmed that the accuracy of satellite-based Ta was less accurate than that of ERA-Interim Ta for total data. Results of analyzing according to elevation that was divided nine cases, ERA-Interim Ta showed higher accurate than satellite-based Ta at the low elevation (less than 500 m). However, satellite-based Ta was more accurate than ERA-Interim Ta at the higher elevation from 500 to 3500 m. Also, the width of the upper and lower quartile appeared largely from 2500 to 3500 m. It is clear from these results that ERA-Interim Ta do not consider elevation because of large spatial resolution. Therefore, satellite-based Ta was more effective than ERA-Interim Ta in the regions that is range from 500 m to 3500 m, and satellite-based Ta was recommended at a region of above 2500 m.

A Feasibility Study on Annual Energy Production of the Offshore Wind Farm using MERRA Reanalysis Data (해상풍력발전단지 연간발전량 예측을 위한 MERRA 재해석 데이터 적용 타당성 연구)

  • Song, Yuan;Kim, Hyungyu;Byeon, Junho;Paek, Insu;Yoo, Neungsoo
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.2
    • /
    • pp.33-41
    • /
    • 2015
  • A feasibility study to estimate annual energy production of an offshore wind farm was performed using MERRA reanalysis data. Two well known commercial codes commonly used to wind farm design and power prediction were used. Three years of MERRA data were used to predict annual energy predictions of the offshore wind farm close to Copenhagen from 2011 to 2013. The availability of the wind farm was calculated from the power output data available online. It was found from the study that the MERRA reanalysis data with commercial codes could be used to fairly accurately predict the annual energy production from offshore wind farms when a meteorological mast is not available.

Wind Resource Assessment on the Western Offshore of Korea Using MERRA Reanalysis Data (MERRA 재해석자료를 이용한 서해상 풍력자원평가)

  • Kim, Hyun-Goo;Jang, Moon-Seok;Ryu, Ki-Wahn
    • Journal of Wind Energy
    • /
    • v.4 no.1
    • /
    • pp.39-45
    • /
    • 2013
  • Massive offshore wind projects of have recently been driven in full gear on the Western Offshore of Korea including the 2.5 GW West-Southern Offshore Wind Project of the Ministry of Trade, Industry and Energy, and the 5 GW Offshore Wind Project of the Jeollanamdo Provincial Government. On this timely occasion, this study performed a general wind resource assessment on the Western Offshore by using the MERRA reanalysis data of temporal-spatial resolution and accuracy greatly improved comparing to conventional reanalysis data. It is hard to consider that wind resources on the Western Sea are excellent, since analysis results indicated the average wind speed of 6.29 ± 0.39 m/s at 50 m above sea level, and average wind power density of 307 ± 53 W/m2. Therefore, it is considered that activities shall be performed for guarantee economic profits from factor other than wind resources when developing an offshore wind project on the Western Offshore.