• Title/Summary/Keyword: realize the algorithm

Search Result 453, Processing Time 0.026 seconds

Petri nets modeling and dynamic scheduling for the back-end line in semiconductor manufacturing (반도체 후공정 라인의 페트리 네트 모델링과 동적 스케쥴링)

  • Jang, Seok-Ho;Hwang, U-Guk;Park, Seung-Gyu;Go, Taek-Beom;Gu, Yeong-Mo;U, Gwang-Bang
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.6
    • /
    • pp.724-733
    • /
    • 1999
  • An effective method of system modeling and dynamic scheduling for the back-end line of semiconductor manufacturing is proposed. The virtual factory, describing semiconductor manufacturing line, is designed in detail, and then a Petri net model simulator is developed for operation and control of the modular cells of the virtual factory. The petri net model is a colored timed Petri nets (CTPNs). The simulator will be utilized to analyze and evaluate various dynamic status and operatons of manufacturing environments. The dynamic schedulaer has a hierarchical structure with the higher for planning level and the lower for dynamic scheduling level. The genetic algorithm is applied to extract optimal conditions of the scheduling algorithm. The proposed dynamic scheduling is able to realize the semiconductor manufacturing environments for the diversity of products, the variety of orders by many customers, the flexibility of order change by changing market conditions, the complexity of manufacturing processes, and the uncertainty of manufacturing resources. The proposed method of dynamic scheduling is more effective and useful in dealing with such recent pressing requirements including on-time delivery, quick response, and flexibility.

  • PDF

Optimal Design System of Grillage Structure under Constraint of Natural Frequency Based on Genetic Algorithm (고유진동수 제한을 갖는 골조구조의 GA 기반 최적설계 시스템)

  • Kim, Sung Chan;Kim, Byung Joo;Kim, E Dam
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.1
    • /
    • pp.39-45
    • /
    • 2022
  • Normal strategy of structure optimization procedure has been minimum cost or weight design. Minimum weight design satisfying an allowable stress has been used for the ship and offshore structure, but minimum cost design could be used for the case of high human cost. Natural frequency analysis and forced vibration one have been used for the strength estimation of marine structures. For the case of high precision experiment facilities in marine field, the structure has normally enough margin in allowable stress aspect and sometimes needs high natural frequency of structure to obtain very high precise experiment results. It is not easy to obtain a structure design with high natural frequency, since the natural frequency depend on the stiffness to mass ratio of the structure and increase of structural stiffness ordinary accompanies the increase of mass. It is further difficult at the grillage structure design using the profiles, because the properties of profiles are not continuous but discrete, and resource of profiles are limited at the design of grillage structure. In this paper, the grillage structure design system under the constraint of high natural frequency is introduced. The design system adopted genetic algorithm to realize optimization procedure and can be used at the design of the experimental facilities of marine field such as a towing carriage, PMM, test frame, measuring frame and rotating arm.

Control of MR Haptic Simulator Using Novel S-chain Model (새로운 S-Chain 모델을 이용한 MR 햅틱 시뮬레이터 제어)

  • Oh, Jong-Seok
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.11
    • /
    • pp.291-297
    • /
    • 2018
  • Due to difficulty in minimally invasive surgery, training simulator is actively researched. A volumetric deformable organ is created by employing a shape-retaining chain-linked (S-chain) model to realize positioning a human organ model in virtual space. Since the main principle of the S-chain algorithm is that the repulsive force is proportional to the number of chain elements, the calculation time can be increased according to the magnitude of deformation. In this work, the advanced S-chain algorithm is used to calculate the repulsive torque according to spin motion. Finally, haptic architecture was constructed using this S-chain model by incorporating the virtual organ with a real master device, which allows the repulsive force and target position to be transferred to each other. The control performance of S-chain algorithm has been evaluated via experiment.

The study of sound source synthesis IC to realize the virtual engine sound of a car powered by electricity without an engine (엔진 없이 전기로 구동되는 자동차의 가상 엔진 음 구현을 위한 음원합성 IC에 관한 연구)

  • Koo, Jae-Eul;Hong, Jae-Gyu;Song, Young-Woog;Lee, Gi-Chang
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.6
    • /
    • pp.571-577
    • /
    • 2021
  • This study is a study on System On Chip (SOC) that implements virtual engine sound in electric vehicles without engines, and realizes vivid engine sound by combining Adaptive Difference PCM (ADPCM) method and frequency modulation method for satisfaction of driver's needs and safety of pedestrians. In addition, by proposing an electronic sound synthesis algorithm applying Musical Instrument Didital Interface (MIDI), an engine sound synthesis method and a constitutive model of an engine sound generation system are presented. In order to satisfy both drivers and pedestrians, this study uses Controller Area Network (CAN) communication to receive information such as Revolution Per Minute (RPM), vehicle speed, accelerator pedal depressed amount, torque, etc., transmitted according to the driver's driving habits, and then modulates the frequency according to the appropriate preset parameters We implemented an interaction algorithm that accurately reflects the intention of the system and driver by using interpolation for the system, ADPCM algorithm for reducing the amount of information, and MIDI format information for making engine sound easier.

An Off-line Maximum Torque Control Strategy of Wound Rotor Synchronous Machine with Nonlinear Parameters

  • Wang, Qi;Lee, Heon-Hyeong;Park, Hong-Joo;Kim, Sung-Il;Lee, Geun-Ho
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.609-617
    • /
    • 2016
  • Belt-driven Starter Generator (BSG) differs from other mild hybrid systems as the crankshaft of vehicle are not run off. Motor permits a low-cost method of adding mild hybrid capabilities such as start-stop, power assist, and mild levels of regenerative braking. Wound rotor synchronous motor (WRSM) could be adopted in BSG system for HEV e-Assisted application instead of the interior permanent magnet synchronous motor (IPMSM). In practice, adequate torque is indispensable for starter assist system, and energy conversion should be taken into account for the HEV or EV as well. Particularly, flux weakening control is possible to realize by adjusting both direct axis components of current and field current in WRSM. Accordingly, this paper present an off-line current acquisition algorithm that can reasonably combine the stator and field current to acquire the maximum torque, meanwhile the energy conversion is taken into consideration by losses. Besides, on account of inductance influence by non-uniform air gap around rotor, nonlinear inductances and armature flux linkage against current variation are proposed to guarantee the results closer to reality. A computer-aided method for proposed algorithm are present and results are given in form of the Look-up table (LUT). The experiment shows the validity of algorithm.

Trajectory Planning for Torque Minimization of Robot Manipulators Using the Lagrange Interpolation Method (라그랑지 보간법을 이용한 로봇 매니퓰레이터의 토크 최소화를 위한 궤적계획)

  • Luo, Lu-Ping;Hwang, Soon-Woong;Han, Chang-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.4
    • /
    • pp.2370-2378
    • /
    • 2015
  • This paper proposes an algorithm using Lagrange interpolation method to realize trajectory planning for torque minimization of robot manipulators. For the algorithm, position constraints of robot manipulators should be given and the stability of robot manipulators should be satisfied. In order to avoid Runge's phenomenon, we set up time interpolation points using Chebyshev interpolation points. After that, we found suitable angle which corresponds to the points and then we got trajectories of joint's angle, velocity, acceleration using Lagrange interpolation method. We selected performance index for torque consumption optimization of robot manipulator. The method went through repetitive computation process to have minimum value of the performance index by calculated trajectory. Through the process, we could get optimized trajectory to minimize torque and performance index and guarantee safety of the motion for manipulator performance.

Implementation of u-Healthcare Security System by applying High Speed PS-LFSR (고속 병렬형 PS-LFSR을 적용한 u-헬스케어 보안 시스템 구현)

  • Kim, Nack-Hyun;Lee, Young-Dong;Kim, Tae-Yong;Jang, Won-Tae;Lee, Hoon-Jae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.1
    • /
    • pp.99-106
    • /
    • 2011
  • The emerging of ubiquitous computing and healthcare technologies provides us a strong platform to build sustainable healthcare applications especially those that require real-time information related to personal healthcare regardless of place. We realize that system stability, reliability and data protection are also important requirements for u-healthcare services. Therefore, in this paper, we designed a u-healthcare system which can be attached to the patient's body to measure vital signals, enhanced with USN secure sensor module. Our proposed u-healthcare system is using wireless sensor modules embedded with NLM-128 algorithm. In addition, PS-LFSR technique is applied to the NLM-128 algorithm to enable faster and more efficient computation. We included some performance statistical results in term of CPU cycles spent on NLM-128 algorithm with and without the PS-LFSR optimization for performance evaluation.

Area Efficient FPGA Implementation of Block Cipher Algorithm SEED (블록 암호알고리즘 SEED의 면적 효율성을 고려한 FPGA 구현)

  • Kim, Jong-Hyeon;Seo, Young-Ho;Kim, Dong-Wook
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.7 no.4
    • /
    • pp.372-381
    • /
    • 2001
  • In this paper SEED, the Korea Standard 128-bit block cipher algorithm is implemented with VHDL and mapped into one FPGA. SEED consists of round key generation block, F function block, G function block, round processing block, control block and I/O block. The designed SEED is realized in an FPGA but we design it technology-independently so that ASIC or core-based implementation is possible. SEED requires many hardware resources which may be impossible to realize in one FPGA. So it is necessary to minimize hardware resources. In this paper only one G function is implemented and is used for both the F function block and the round key block. That is, by using one G function sequentially, we can realize all the SEED components in one FPGA. The used cell rate after synthesis is 80% in Altem FLEXI0KlOO. The resulted design has 28Mhz clock speed and 14.9Mbps performance. The SEED hardware is technology-independent and no other external component is needed. Thus, it can be applied to other SEED implementations and cipher systems which use SEED.

  • PDF

Sliding Mode Fuzzy Control for Wind Vibration Control of Tall Building (Sliding Mode Fuzzy Control을 사용한 바람에 의한 대형 구조물의 진동제어)

  • 김상범;윤정방
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.10a
    • /
    • pp.79-83
    • /
    • 2000
  • A sliding mode fuzzy control (SMFC) with disturbance estimator is applied to design a controller for the third generation benchmark problem on an wind-excited building. A distinctive feature in vibration control of large civil infrastructure is the existence of large disturbances, such as wind, earthquake, and sea wave forces. Those disturbances govern the behavior of the structure, however, they cannot be precisely measured, especially for the case of wind-induced vibration control. Since the structural accelerations are measured only at a limited number of locations without the measurement of the wind forces, the structure of the conventional control may have the feed-back loop only. General structure of the SMFC is composed of a compensation part and a convergent part. The compensation part prevents the system diverge, and the convergent part makes the system converge to the sliding surface. The compensation part uses not only the structural response measurement but also the disturbance measurement, so the SMFC has a feed-back loop and a feed-forward loop. To realize the virtual feed-forward loop for the wind-induced vibration control, disturbance estimation filter is introduced. the structure of the filter is constructed based on an auto regressive model for the stochastic wind force. This filter estimates the wind force at each time instance based on the measured structural responses and the stochastic information of the wind force. For the verification of the proposed algorithm, a numerical simulation is carried out on the benchmark problem of a wind-excited building. The results indicate that the present control algorithm is very efficient for reducing the wind-induced vibration and that the performance indices improve as the filter for wind force estimation is employed.

  • PDF

Human Friendly Recognition and Editing Support System of Korean Language (인간에게 친밀한 한글 인식 및 편집 지원시스템)

  • Sohn, Young-Sun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.4
    • /
    • pp.494-499
    • /
    • 2007
  • In this paper we realized a system, if a user selects the area of the important parts or the arrangement parts when he reads the books or the papers, which amends, stores and readjusts the characters that are included in the selected area by outputting the characters to the word processor in sequence. If a user selects what he wishes lot with his finger, the system detects the movement of the finger by applying the hand recognition algorithm and recognizes the selected area. The system converts the distance of the width and the length of the selected area to the number of the pulse, and controls the motor to move the camera at the position. After the system scales up/down the zoom to be able to recognize the character and controls the focus to the regulated zoom closely, it controls the focus in detail to get more distinct image by using the difference of the light and darkness. We realize the recognition and editing support system of korean language that converts the obtained images to the document by applying the character recognition algorithm and arrange the important parts.