• Title/Summary/Keyword: real-time network

Search Result 4,424, Processing Time 0.038 seconds

P2P Based Telemedicine System Using Thermographic Camera (열화상 카메라를 포함한 P2P 방식의 원격진료 시스템)

  • Kim, Kyoung Min;Ryu, Jae Hyun;Hong, Sung Jun;Kim, Hongjun
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.32 no.3
    • /
    • pp.547-554
    • /
    • 2022
  • Recently, the field of telemedicine is growing rapidly due to the COVID-19 pandemic. However, the cost of telemedicine services is relatively high, since cloud computing, video conferencing, and cyber security should be considered. Therefore, in this paper, we design and implement a cost-effective P2P-based telemedicine system. It is implemented using the widely used the open source computing platform, Raspberry Pi, and P2P network that frees users from security problems such as the privacy leakage by the central server and DDoS attacks resulting from the server/client architecture and enables trustworthy identifying connection system using SSL protocol. Also it enables users to check the other party's status including body temperature in real time by installing a thermal imaging camera using Raspberry Pi. This allows several medical diagnoses that requires visual aids. The proposed telemedicine system will popularize telemedicine service and meet the ever-increasing demand for telemedicine.

Differentially Expressed Genes in Period 2-Overexpressing Mice Striatum May Underlie Their Lower Sensitivity to Methamphetamine Addiction-Like Behavior

  • Sayson, Leandro Val;Kim, Mikyung;Jeon, Se Jin;Custodio, Raly James Perez;Lee, Hyun Jun;Ortiz, Darlene Mae;Cheong, Jae Hoon;Kim, Hee Jin
    • Biomolecules & Therapeutics
    • /
    • v.30 no.3
    • /
    • pp.238-245
    • /
    • 2022
  • Previous reports have demonstrated that genetic mechanisms greatly mediate responses to drugs of abuse, including methamphetamine (METH). The circadian gene Period 2 (Per2) has been previously associated with differential responses towards METH in mice. While the behavioral consequences of eliminating Per2 have been illustrated previously, Per2 overexpression has not yet been comprehensively described; although, Per2-overexpressing (Per2 OE) mice previously showed reduced sensitivity towards METH-induced addiction-like behaviors. To further elucidate this distinct behavior of Per2 OE mice to METH, we identified possible candidate biomarkers by determining striatal differentially expressed genes (DEGs) in both drug-naïve and METH-treated Per2 OE mice relative to wild-type (WT), through RNA sequencing. Of the several DEGs in drug naïve Per2 OE mice, we identified six genes that were altered after repeated METH treatment in WT mice, but not in Per2 OE mice. These results, validated by quantitative real-time polymerase chain reaction, could suggest that the identified DEGs might underlie the previously reported weaker METH-induced responses of Per2 OE mice compared to WT. Gene network analysis also revealed that Asic3, Hba-a1, and Rnf17 are possibly associated with Per2 through physical interactions and predicted correlations, and might potentially participate in addiction. Inhibiting the functional protein of Asic3 prior to METH administration resulted in the partial reduction of METH-induced conditioned place preference in WT mice, supporting a possible involvement of Asic3 in METH-induced reward. Although encouraging further investigations, our findings suggest that these DEGs, including Asic3, may play significant roles in the lower sensitivity of Per2 OE mice to METH.

Hepatotoxic mechanism of diclofenac sodium on broiler chicken revealed by iTRAQ-based proteomics analysis

  • Sun, Chuanxi;Zhu, Tianyi;Zhu, Yuwei;Li, Bing;Zhang, Jiaming;Liu, Yixin;Juan, Changning;Yang, Shifa;Zhao, Zengcheng;Wan, Renzhong;Lin, Shuqian;Yin, Bin
    • Journal of Veterinary Science
    • /
    • v.23 no.4
    • /
    • pp.56.1-56.17
    • /
    • 2022
  • Background: At the therapeutic doses, diclofenac sodium (DFS) has few toxic side effects on mammals. On the other hand, DFS exhibits potent toxicity against birds and the mechanisms remain ambiguous. Objectives: This paper was designed to probe the toxicity of DFS exposure on the hepatic proteome of broiler chickens. Methods: Twenty 30-day-old broiler chickens were randomized evenly into two groups (n = 10). DFS was administered orally at 10mg/kg body weight in group A, while the chickens in group B were perfused with saline as a control. Histopathological observations, serum biochemical examinations, and quantitative real-time polymerase chain reaction were performed to assess the liver injury induced by DFS. Proteomics analysis of the liver samples was conducted using isobaric tags for relative and absolute quantification (iTRAQ) technology. Results: Ultimately, 201 differentially expressed proteins (DEPs) were obtained, of which 47 were up regulated, and 154 were down regulated. The Gene Ontology classification and Kyoto Encyclopedia of Genes and Genomes pathway analysis were conducted to screen target DEPs associated with DFS hepatotoxicity. The regulatory relationships between DEPs and signaling pathways were embodied via a protein-protein interaction network. The results showed that the DEPs enriched in multiple pathways, which might be related to the hepatotoxicity of DFS, were "protein processing in endoplasmic reticulum," "retinol metabolism," and "glycine, serine, and threonine metabolism." Conclusions: The hepatotoxicity of DFS on broiler chickens might be achieved by inducing the apoptosis of hepatocytes and affecting the metabolism of retinol and purine. The present study could provide molecular insights into the hepatotoxicity of DFS on broiler chickens.

Development and Usability Evaluation of Hand Rehabilitation Training System Using Multi-Channel EMG-Based Deep Learning Hand Posture Recognition (다채널 근전도 기반 딥러닝 동작 인식을 활용한 손 재활 훈련시스템 개발 및 사용성 평가)

  • Ahn, Sung Moo;Lee, Gun Hee;Kim, Se Jin;Bae, So Jeong;Lee, Hyun Ju;Oh, Do Chang;Tae, Ki Sik
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.5
    • /
    • pp.361-368
    • /
    • 2022
  • The purpose of this study was to develop a hand rehabilitation training system for hemiplegic patients. We also tried to find out five hand postures (WF: Wrist Flexion, WE: Wrist Extension, BG: Ball Grip, HG: Hook Grip, RE: Rest) in real-time using multi-channel EMG-based deep learning. We performed a pre-processing method that converts to Spider Chart image data for the classification of hand movement from five test subjects (total 1,500 data sets) using Convolution Neural Networks (CNN) deep learning with an 8-channel armband. As a result of this study, the recognition accuracy was 92% for WF, 94% for WE, 76% for BG, 82% for HG, and 88% for RE. Also, ten physical therapists participated for the usability evaluation. The questionnaire consisted of 7 items of acceptance, interest, and satisfaction, and the mean and standard deviation were calculated by dividing each into a 5-point scale. As a result, high scores were obtained in immersion and interest in game (4.6±0.43), convenience of the device (4.9±0.30), and satisfaction after treatment (4.1±0.48). On the other hand, Conformity of intention for treatment (3.90±0.49) was relatively low. This is thought to be because the game play may be difficult depending on the degree of spasticity of the hemiplegic patient, and compensation may occur in patient with weakened target muscles. Therefore, it is necessary to develop a rehabilitation program suitable for the degree of disability of the patient.

Development of an intelligent edge computing device equipped with on-device AI vision model (온디바이스 AI 비전 모델이 탑재된 지능형 엣지 컴퓨팅 기기 개발)

  • Kang, Namhi
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.5
    • /
    • pp.17-22
    • /
    • 2022
  • In this paper, we design a lightweight embedded device that can support intelligent edge computing, and show that the device quickly detects an object in an image input from a camera device in real time. The proposed system can be applied to environments without pre-installed infrastructure, such as an intelligent video control system for industrial sites or military areas, or video security systems mounted on autonomous vehicles such as drones. The On-Device AI(Artificial intelligence) technology is increasingly required for the widespread application of intelligent vision recognition systems. Computing offloading from an image data acquisition device to a nearby edge device enables fast service with less network and system resources than AI services performed in the cloud. In addition, it is expected to be safely applied to various industries as it can reduce the attack surface vulnerable to various hacking attacks and minimize the disclosure of sensitive data.

Cloud-based Artificial Intelligence Fulfillment Service Platform in the Urban Manufacturing Cluster in Seoul (서울시 도심제조업 집적지에서의 Cloud 기반 인공지능 Fulfillment 서비스 Platform 연구)

  • Kim, Hyo-Young;Park, Dea-Woo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.10
    • /
    • pp.1447-1452
    • /
    • 2022
  • Seoul Special City, one of the world's top 10 cities and Metro City, has traditional urban manufacturing industries such as printing, sewing, and mechanical metals. Small business owners in these manufacturing clusters have developed in the form of mutual assistance. Due to the nature of the agglomeration site, each process is handled by an individual company. It is difficult for relatively small business owners to prepare order processing services that provide real-time logistics movement information between processes. This paper collects and analyzes existing logistics data for smooth order and delivery of small business owners in package manufacturing and special printing fields We design an artificial intelligence Fulfillment Service Platform system with CRNN, k-NN, and ID3 Decision Tree Algorithm. Through this study, it is expected that it will greatly contribute to increasing sales and improving capabilities by allowing small business owners in integrated areas to use individual orders and delivery customized services through the Cloud network.

The Analysis on the Recyclability of Shenlong Automobile Company in China using SWOT Technique

  • Zhao, Wei;Jung, Heonyong
    • International Journal of Advanced Culture Technology
    • /
    • v.10 no.3
    • /
    • pp.146-155
    • /
    • 2022
  • The purpose of this study is to investigate the recyclability of Shenlong in China using SWOT. The main analysis results are as follows. First, provided that the company's current capacity utilization rate is seriously insufficient, reducing staff is one among the effective ways. Second, Shenlong should open a web store to cater to young people's online shopping behavior, and further expand the brand visibility using national mainstream media and online shopping platforms like Taobao and JingDong to market Dongfeng Peugeot and Dongfeng Citroen on the whole network. Third, under the premise of maintaining the present best-selling models, Shenlong should appropriately reduce the amount of models, adjust the assembly capacity ratio of every model and every displacement in real time per the newest market trends, increase the agility of auto companies' production, and timely meet the wants of domestic consumers. Fourth, dual-brand coordination and channel integration are very necessary, and also the profitability and profitability of dealers are going to be further improved, thereby increasing sales. Fifth, target building new energy leading products of Shenlong, strive to attain the forefront of the industry within the sales of recent energy vehicles within 5 years, and gradually expand new energy vehicle products from passenger vehicles to passenger vehicles and commercial vehicles. Finally, the marketing field of Shenlong Automobile should achieve "three major changes", that is, change from a goal-driven type to a demand-driven type, cancel the bundling of outlet invoicing goals and delivery incentive tiers; start from basic capabilities, and set pragmatic and challenging goals; focus Channels, to realize following the activation of outlets, and single store sales increase.

A deep learning-based approach for feeding behavior recognition of weanling pigs

  • Kim, MinJu;Choi, YoHan;Lee, Jeong-nam;Sa, SooJin;Cho, Hyun-chong
    • Journal of Animal Science and Technology
    • /
    • v.63 no.6
    • /
    • pp.1453-1463
    • /
    • 2021
  • Feeding is the most important behavior that represents the health and welfare of weanling pigs. The early detection of feed refusal is crucial for the control of disease in the initial stages and the detection of empty feeders for adding feed in a timely manner. This paper proposes a real-time technique for the detection and recognition of small pigs using a deep-leaning-based method. The proposed model focuses on detecting pigs on a feeder in a feeding position. Conventional methods detect pigs and then classify them into different behavior gestures. In contrast, in the proposed method, these two tasks are combined into a single process to detect only feeding behavior to increase the speed of detection. Considering the significant differences between pig behaviors at different sizes, adaptive adjustments are introduced into a you-only-look-once (YOLO) model, including an angle optimization strategy between the head and body for detecting a head in a feeder. According to experimental results, this method can detect the feeding behavior of pigs and screen non-feeding positions with 95.66%, 94.22%, and 96.56% average precision (AP) at an intersection over union (IoU) threshold of 0.5 for YOLOv3, YOLOv4, and an additional layer and with the proposed activation function, respectively. Drinking behavior was detected with 86.86%, 89.16%, and 86.41% AP at a 0.5 IoU threshold for YOLOv3, YOLOv4, and the proposed activation function, respectively. In terms of detection and classification, the results of our study demonstrate that the proposed method yields higher precision and recall compared to conventional methods.

Abnormal behaviour in rock bream (Oplegnathus fasciatus) detected using deep learning-based image analysis

  • Jang, Jun-Chul;Kim, Yeo-Reum;Bak, SuHo;Jang, Seon-Woong;Kim, Jong-Myoung
    • Fisheries and Aquatic Sciences
    • /
    • v.25 no.3
    • /
    • pp.151-157
    • /
    • 2022
  • Various approaches have been applied to transform aquaculture from a manual, labour-intensive industry to one dependent on automation technologies in the era of the fourth industrial revolution. Technologies associated with the monitoring of physical condition have successfully been applied in most aquafarm facilities; however, real-time biological monitoring systems that can observe fish condition and behaviour are still required. In this study, we used a video recorder placed on top of a fish tank to observe the swimming patterns of rock bream (Oplegnathus fasciatus), first one fish alone and then a group of five fish. Rock bream in the video samples were successfully identified using the you-only-look-once v3 algorithm, which is based on the Darknet-53 convolutional neural network. In addition to recordings of swimming behaviour under normal conditions, the swimming patterns of fish under abnormal conditions were recorded on adding an anaesthetic or lowering the salinity. The abnormal conditions led to changes in the velocity of movement (3.8 ± 0.6 cm/s) involving an initial rapid increase in speed (up to 16.5 ± 3.0 cm/s, upon 2-phenoxyethanol treatment) before the fish stopped moving, as well as changing from swimming upright to dying lying on their sides. Machine learning was applied to datasets consisting of normal or abnormal behaviour patterns, to evaluate the fish behaviour. The proposed algorithm showed a high accuracy (98.1%) in discriminating normal and abnormal rock bream behaviour. We conclude that artificial intelligence-based detection of abnormal behaviour can be applied to develop an automatic bio-management system for use in the aquaculture industry.

Efficient Visual Place Recognition by Adaptive CNN Landmark Matching

  • Chen, Yutian;Gan, Wenyan;Zhu, Yi;Tian, Hui;Wang, Cong;Ma, Wenfeng;Li, Yunbo;Wang, Dong;He, Jixian
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.11
    • /
    • pp.4084-4104
    • /
    • 2021
  • Visual place recognition (VPR) is a fundamental yet challenging task of mobile robot navigation and localization. The existing VPR methods are usually based on some pairwise similarity of image descriptors, so they are sensitive to visual appearance change and also computationally expensive. This paper proposes a simple yet effective four-step method that achieves adaptive convolutional neural network (CNN) landmark matching for VPR. First, based on the features extracted from existing CNN models, the regions with higher significance scores are selected as landmarks. Then, according to the coordinate positions of potential landmarks, landmark matching is improved by removing mismatched landmark pairs. Finally, considering the significance scores obtained in the first step, robust image retrieval is performed based on adaptive landmark matching, and it gives more weight to the landmark matching pairs with higher significance scores. To verify the efficiency and robustness of the proposed method, evaluations are conducted on standard benchmark datasets. The experimental results indicate that the proposed method reduces the feature representation space of place images by more than 75% with negligible loss in recognition precision. Also, it achieves a fast matching speed in similarity calculation, satisfying the real-time requirement.