Acknowledgement
This work was supported by the Ministry of Food and Drug Safety (19182MFDS410) and the National Research Foundation of Korea (2020R1F1A1075633 and 20211R1G1A1093620).
References
- Abarca, C., Albrecht, U. and Spanagel, R. (2002) Cocaine sensitization and reward are under the influence of circadian genes and rhythm. Proc. Natl. Acad. Sci. U.S.A. 99, 9026-9030. https://doi.org/10.1073/pnas.142039099
- Andreev, Y. A., Osmakov, D. I., Koshelev, S. G., Maleeva, E. E., Logashina, Y. A., Palikov, V. A., Palikova, Y. A., Dyachenko, I. A. and Kozlov, S. A. (2018) Analgesic activity of acid-sensing ion channel 3 (ASIC3) inhibitors: sea anemones peptides Ugr9-1 and APETx2 versus low molecular weight compounds. Mar. Drugs 16, 500. https://doi.org/10.3390/md16120500
- Andrus, B. M., Blizinsky, K., Vedell, P. T., Dennis, K., Shukla, P. K., Schaffer, D. J., Radulovic, J., Churchill, G. A. and Redei, E. E. (2012) Gene expression patterns in the hippocampus and amygdala of endogenous depression and chronic stress models. Mol. Psychiatry 17, 49-61. https://doi.org/10.1038/mp.2010.119
- Ballester, J., Valentine, G., and Sofuoglu, M. (2016) Pharmacological treatments for methamphetamine addiction: current status and future directions. Expert Rev. Clin. Pharmacol. 10, 305-314.
- Chavoshi, H., Boroujeni, M. E., Abdollahifar, M. A., Amini, A., Tehrani, A. M., Moghaddam, M. H., Norozian, M., Farahani, R. M. and Aliaghaei, A. (2020) From dysregulated microRNAs to structural alterations in the striatal region of METH-injected rats. J. Chem. Neuroanat. 109, 101854. https://doi.org/10.1016/j.jchemneu.2020.101854
- Custodio, R. J. P., Sayson, L. V., Botanas, C. J., Abiero, A., Kim, M., Lee, H. J., Ryu, H. W., Lee, Y. S., Kim, H. J. and Cheong, J. H. (2020) Two newly-emerging substituted phenethylamines MAL and BOD induce differential psychopharmacological effects in rodents. J. Psychopharmacol. 34, 1056-1067. https://doi.org/10.1177/0269881120936458
- Ducci, F., and Goldman, D. (2012) The genetic basis of addictive disorders. Psychiatr. Clin. North Am. 35, 495-519. https://doi.org/10.1016/j.psc.2012.03.010
- Hampp, G., Ripperger, J. A., Houben, T., Schmutz, I., Blex, C., Perreau-Lenz, S., Brunk, I., Spanagel, R., Ahnert-Hilger, G., Meijer, J. H. and Albrecht, U. (2008) Regulation of monoamine oxidase A by circadian-clock components implies clock influence on mood. Curr. Biol. 18, 678-683. https://doi.org/10.1016/j.cub.2008.04.012
- Hitzemann, R., Iancu, O. D., Reed, C., Baba, H., Lockwood, D. R. and Phillips, T. J. (2019) Regional analysis of the brain transcriptome in mice bred for high and low methamphetamine consumption. Brain Sci. 9, 155. https://doi.org/10.3390/brainsci9070155
- Hood, S., Cassidy, P., Cossette, M. P., Weigl, Y., Verwey, M., Robinson, B., Stewart, J. and Amir, S. (2010) Endogenous dopamine regulates the rhythm of expression of the clock protein PER2 in the rat dorsal striatum via daily activation of D2 dopamine receptors. J. Neurosci. 30, 14046-14058. https://doi.org/10.1523/JNEUROSCI.2128-10.2010
- Jedynak, J. P., Uslaner, J. M., Esteban, J. A. and Robinson, T. E. (2007) Methamphetamine-induced structural plasticity in the dorsal striatum. Eur. J. Neurosci. 25, 847-853. https://doi.org/10.1111/j.1460-9568.2007.05316.x
- Jiang, Q., Wang, C. M., Fibuch, E. E., Wang, J. Q. and Chu, X. P. (2013) Differential regulation of locomotor activity to acute and chronic cocaine administration by acid-sensing ion channel 1a and 2 in adult mice. Neuroscience 246, 170-178. https://doi.org/10.1016/j.neuroscience.2013.04.059
- Joazeiro, C. A. P. and Weissman, A. M. (2000) RING finger proteins: mediators of ubiquitin ligase activity. Cell 102, 549-552. https://doi.org/10.1016/S0092-8674(00)00077-5
- Kerns, R. T. (2005) Ethanol-responsive brain region expression networks: implications for behavioral responses to acute ethanol in DBA/2J versus C57BL/6J mice. J. Neurosci. 25, 2255-2266. https://doi.org/10.1523/JNEUROSCI.4372-04.2005
- Kim, M., Custodio, R. J., Botanas, C. J., de la Pena, J. B., Sayson, L. V., Abiero, A., Ryoo, Z. Y., Cheong, J. H. and Kim, H. J. (2019) The circadian gene, Per2, influences methamphetamine sensitization and reward through the dopaminergic system in the striatum of mice. Addict. Biol. 24, 946-957. https://doi.org/10.1111/adb.12663
- Kim, M., Jeon, S. J., Custodio, R. J., Lee, H. J., Sayson, L. V., Ortiz, D. M. D., Cheong, J. H. and Kim, H. J. (2021) Gene expression profiling in the striatum of Per2 KO mice exhibiting more vulnerable responses against methamphetamine. Biomol. Ther. (Seoul) 29, 135-143. https://doi.org/10.4062/biomolther.2020.123
- Kreple, C. J., Lu, Y., Taugher, R. J., Schwager-Gutman, A. L., Du, J., Stump, M., Wang, Y., Ghobbeh, A., Fan, R., Cosme, C. V., Sowers, L. P., Welsh, M. J., Radley, J. J., LaLumiere, R. T. and Wemmie, J. A. (2014) Acid-sensing ion channels contribute to synaptic transmission and inhibit cocaine-evoked plasticity. Nat. Neurosci. 17, 1083-1091. https://doi.org/10.1038/nn.3750
- Li, W. G. and Xu, T. L. (2011) ASIC3 channels in multimodal sensory perception. ACS Chem. Neurosci. 2, 26-37. https://doi.org/10.1021/cn100094b
- McClung, C. A. (2007) Circadian rhythms, the mesolimbic dopaminergic circuit, and drug addiction. Sci. World J. 7, 194-202. https://doi.org/10.1100/tsw.2007.213
- Mulligan, M. K., Rhodes, J. S., Crabbe, J. C., Mayfield, R. D., Harris, R. A. and Ponomarev, I. (2011) Molecular profiles of drinking alcohol to intoxication in C57BL/6J mice. Alcohol. Clin. Exp. Res. 35, 659-670. https://doi.org/10.1111/j.1530-0277.2010.01384.x
- National Institute on Drug Abuse (2018) Overview | National Institute on Drug Abuse (NIDA). https://nida.nih.gov/publications/research-reports/methamphetamine/overview
- Nestler, E. J. (2000) Genes and addiction. Nat. Genet. 26, 277-281. https://doi.org/10.1038/81570
- Nikaido, T., Akiyama, M., Moriya, T. and Shibata, S. (2001) Sensitized increase of period gene expression in the mouse caudate/putamen caused by repeated injection of methamphetamine. Mol. Pharmacol. 59, 894-900. https://doi.org/10.1124/mol.59.4.894
- Palmer, A. A., Verbitsky, M., Suresh, R., Kamens, H. M., Reed, C. L., Li, N., Burkhart-Kasch, S., McKinnon, C. S., Belknap, J. K., Gilliam, T. C. and Phillips, T. J. (2005) Gene expression differences in mice divergently selected for methamphetamine sensitivity. Mamm. Genome 16, 291-305. https://doi.org/10.1007/s00335-004-2451-8
- Passaro, R. C., Pandhare, J., Qian, H. Z. and Dash, C. (2015) The complex interaction between methamphetamine abuse and HIV-1 pathogenesis. J. Neuroimmune Pharmacol. 10, 477-486. https://doi.org/10.1007/s11481-015-9604-2
- Piechota, M., Korostynski, M., Sikora, M., Golda, S., Dzbek, J. and Przewlocki, R. (2012) Common transcriptional effects in the mouse striatum following chronic treatment with heroin and methamphetamine. Genes Brain Behav. 11, 404-414. https://doi.org/10.1111/j.1601-183X.2012.00777.x
- Salzmann, J., Canestrelli, C., Noble, F. and Marie-Claire, C. (2006) Analysis of transcriptional responses in the mouse dorsal striatum following acute 3,4-methylenedioxymethamphetamine (ecstasy): identification of extracellular signal-regulated kinase-controlled genes. Neuroscience 137, 473-482. https://doi.org/10.1016/j.neuroscience.2005.09.019
- Sayson, L. V., Custodio, R. J. P., Ortiz, D. M., Lee, H. J., Kim, M., Jeong, Y., Lee, Y. S., Kim, H. J. and Cheong, J. H. (2020) The potential rewarding and reinforcing effects of the substituted benzofurans 2-EAPB and 5-EAPB in rodents. Eur. J. Pharmacol. 885, 173527. https://doi.org/10.1016/j.ejphar.2020.173527
- Shumay, E., Fowler, J. S., Wang, G. J., Logan, J., Alia-Klein, N., Goldstein, R. Z., Maloney, T., Wong, C. and Volkow, N. D. (2012) Repeat variation in the human PER2 gene as a new genetic marker associated with cocaine addiction and brain dopamine D2 receptor availability. Transl. Psychiatry 2, e86. https://doi.org/10.1038/tp.2012.11
- Sliman, S., Waalen, J. and Shaw, D. (2016) Methamphetamine-associated congestive heart failure: increasing prevalence and relationship of clinical outcomes to continued use or abstinence. Cardiovasc. Toxicol. 16, 381-389. https://doi.org/10.1007/s12012-015-9350-y
- Soriani, O. and Kourrich, S. (2019) The sigma-1 receptor: when adaptive regulation of cell electrical activity contributes to stimulant addiction and cancer. Front. Neurosci. 13, 1186. https://doi.org/10.3389/fnins.2019.01186
- Spanagel, R., Pendyala, G., Abarca, C., Zghoul, T., Sanchis-Segura, C., Magnone, M. C., Lascorz, J., Depner, M., Holzberg, D., Soyka, M., Schreiber, S., Matsuda, F., Lathrop, M., Schumann, G. and Albrecht, U. (2005) The clock gene Per2 influences the glutamatergic system and modulates alcohol consumption. Nat. Med. 11, 35-42. https://doi.org/10.1038/nm1163
- Stankiewicz, A. M., Goscik, J., Majewska, A., Swiergiel, A. H. and Juszczak, G. R. (2015) The effect of acute and chronic social stress on the hippocampal transcriptome in mice. PLoS ONE 10, e0142195. https://doi.org/10.1371/journal.pone.0142195
- Sun, J., Chen, F., Chen, C., Zhang, Z., Zhang, Z., Tian, W., Yu, J. and Wang, K. (2020) Intestinal mRNA expression profile and bioinformatics analysis in a methamphetamine-induced mouse model of inflammatory bowel disease. Ann. Transl. Med. 8, 1669. https://doi.org/10.21037/atm-20-7741
- Tavasolian, F., Abdollahi, E., Samadi, M. and Vakili, M. (2015) Analysis of hematological and biochemical parameters in methamphetamine addicts compared with healthy individuals. Med. Lab. J. 9, 38-42.
- VanGuilder, H. D., Vrana, K. E. and Freeman, W. M. (2008) Twentyfive years of quantitative PCR for gene expression analysis. Biotechniques 44, 619-626. https://doi.org/10.2144/000112776
- Wu, M., Zeng, J., Chen, Y., Zeng, Z., Zhang, J., Cai, Y., Ye, Y., Fu, L., Xian, L. and Chen, Z. (2012) Experimental chronic jet lag promotes growth and lung metastasis of Lewis lung carcinoma in C57BL/6 mice. Oncol. Rep. 27, 1417-1428. https://doi.org/10.3892/or.2012.1688
- Wu, W. L., Cheng, S. J., Lin, S. H., Chuang, Y. C., Huang, E. Y. K. and Chen, C. C. (2019) The effect of ASIC3 knockout on corticostriatal circuit and mouse self-grooming behavior. Front. Cell. Neurosci. 13, 86. https://doi.org/10.3389/fncel.2019.00086
- Yamamoto, H., Imai, K., Takamatsu, Y., Kamegaya, E., Kishida, M., Hagino, Y., Hara, Y., Shimada, K., Yamamoto, T., Sora, I., Koga, H. and Ikeda, K. (2005) Methamphetamine modulation of gene expression in the brain: analysis using customized cDNA microarray system with the mouse homologues of KIAA genes. Mol. Brain Res. 137, 40-46. https://doi.org/10.1016/j.molbrainres.2005.02.028
- Yazdani, N., Parker, C. C., Shen, Y., Reed, E. R., Guido, M. A., Kole, L. A., Kirkpatrick, S. L., Lim, J. E., Sokoloff, G., Cheng, R., Johnson, W. E., Palmer, A. A. and Bryant, C. D. (2015) Hnrnph1 is a quantitative trait gene for methamphetamine sensitivity. PLoS Genet. 11, e1005713. https://doi.org/10.1371/journal.pgen.1005713
- Zhao, C., Eisinger, B. E., Driessen, T. M. and Gammie, S. C. (2014) Addiction and reward-related genes show altered expression in the postpartum nucleus accumbens. Front. Behav. Neurosci. 8, 388. https://doi.org/10.3389/fnbeh.2014.00388
- Zhu, L., Li, J., Dong, N., Guan, F., Liu, Y., Ma, D., Goh, E. L. and Chen, T. (2016) mRNA changes in nucleus accumbens related to methamphetamine addiction in mice. Sci. Rep. 6, 36993. https://doi.org/10.1038/srep36993