• Title/Summary/Keyword: real-time network

Search Result 4,424, Processing Time 0.04 seconds

Development of CanSat System for Vehicle Tracking based on Jetson Nano (젯슨 나노 기반의 차량 추적 캔위성 시스템 개발)

  • Lee, Younggun;Lee, Sanghyun;You, Seunghoon;Lee, Sangku
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.556-558
    • /
    • 2022
  • This paper proposes a CanSat system with a vehicle tracking function based on Jetson Nano, a high-performance small computer capable of operating artificial intelligence algorithms. The CanSat system consists of a CanSat and a ground station. The CanSat falls in the atmosphere and transmits the data obtained through the installed sensors to the ground station using wireless communication. The existing CanSat is limited to the mission of simply transmitting the collected information to the ground station, and there is a limit to efficiently performing the mission due to the limited fall time and bandwidth limitation of wireless communication. The Jetson Nano based CanSat proposed in this paper uses a pre-trained neural network model to detect the location of a vehicle in each image taken from the air in real time, and then uses a 2-axis motor to move the camera to track the vehicle.

  • PDF

A Study on Efficient BACnet/SC to ensure Data Reliability in Wireless Environments (무선 환경에서 데이터의 신뢰성을 보장하는 효율적인 BACnet/SC 개선 방안 연구)

  • Seo-yeon Kim;Sung-sik Im;Dong-woo Kim;Su-jin Han;Ki-chan Lee;Soo-hyun Oh
    • Convergence Security Journal
    • /
    • v.24 no.1
    • /
    • pp.11-20
    • /
    • 2024
  • Recently, smart buildings that can efficiently manage energy using ICT technology and operate and control through the building automation system by collecting data from a large number of IoT sensors in real time are attracting attention. However, as data management is carried out through an open environment, the safety of smart buildings is threatened by the security vulnerability of the existing building automation protocol. Therefore, in this paper, we analyze the major data link technology of BACnet, which is used universally, and propose OWE-based efficient BACnet/SC that can ensure the reliability of data in a wireless environment. The proposed protocol enables safe communication even in an open network by applying OWE and provides the same level of security as BACnet/SC in a TLS environment. As a result, it reduces the connection process twice and reduces the average time required by 40%, enabling more efficient communication than before.

Generation of wind turbine blade surface defect dataset based on StyleGAN3 and PBGMs

  • W.R. Li;W.H. Zhao;T.T. Wang;Y.F. Du
    • Smart Structures and Systems
    • /
    • v.34 no.2
    • /
    • pp.129-143
    • /
    • 2024
  • In recent years, with the vigorous development of visual algorithms, a large amount of research has been conducted on blade surface defect detection methods represented by deep learning. Detection methods based on deep learning models must rely on a large and rich dataset. However, the geographical location and working environment of wind turbines makes it difficult to effectively capture images of blade surface defects, which inevitably hinders visual detection. In response to the challenge of collecting a dataset for surface defects that are difficult to obtain, a multi-class blade surface defect generation method based on the StyleGAN3 (Style Generative Adversarial Networks 3) deep learning model and PBGMs (Physics-Based Graphics Models) method has been proposed. Firstly, a small number of real blade surface defect datasets are trained using the adversarial neural network of the StyleGAN3 deep learning model to generate a large number of high-resolution blade surface defect images. Secondly, the generated images are processed through Matting and Resize operations to create defect foreground images. The blade background images produced using PBGM technology are randomly fused, resulting in a diverse and high-resolution blade surface defect dataset with multiple types of backgrounds. Finally, experimental validation has proven that the adoption of this method can generate images with defect characteristics and high resolution, achieving a proportion of over 98.5%. Additionally, utilizing the EISeg annotation method significantly reduces the annotation time to just 1/7 of the time required for traditional methods. These generated images and annotated data of blade surface defects provide robust support for the detection of blade surface defects.

Edge to Edge Model and Delay Performance Evaluation for Autonomous Driving (자율 주행을 위한 Edge to Edge 모델 및 지연 성능 평가)

  • Cho, Moon Ki;Bae, Kyoung Yul
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.1
    • /
    • pp.191-207
    • /
    • 2021
  • Up to this day, mobile communications have evolved rapidly over the decades, mainly focusing on speed-up to meet the growing data demands of 2G to 5G. And with the start of the 5G era, efforts are being made to provide such various services to customers, as IoT, V2X, robots, artificial intelligence, augmented virtual reality, and smart cities, which are expected to change the environment of our lives and industries as a whole. In a bid to provide those services, on top of high speed data, reduced latency and reliability are critical for real-time services. Thus, 5G has paved the way for service delivery through maximum speed of 20Gbps, a delay of 1ms, and a connecting device of 106/㎢ In particular, in intelligent traffic control systems and services using various vehicle-based Vehicle to X (V2X), such as traffic control, in addition to high-speed data speed, reduction of delay and reliability for real-time services are very important. 5G communication uses high frequencies of 3.5Ghz and 28Ghz. These high-frequency waves can go with high-speed thanks to their straightness while their short wavelength and small diffraction angle limit their reach to distance and prevent them from penetrating walls, causing restrictions on their use indoors. Therefore, under existing networks it's difficult to overcome these constraints. The underlying centralized SDN also has a limited capability in offering delay-sensitive services because communication with many nodes creates overload in its processing. Basically, SDN, which means a structure that separates signals from the control plane from packets in the data plane, requires control of the delay-related tree structure available in the event of an emergency during autonomous driving. In these scenarios, the network architecture that handles in-vehicle information is a major variable of delay. Since SDNs in general centralized structures are difficult to meet the desired delay level, studies on the optimal size of SDNs for information processing should be conducted. Thus, SDNs need to be separated on a certain scale and construct a new type of network, which can efficiently respond to dynamically changing traffic and provide high-quality, flexible services. Moreover, the structure of these networks is closely related to ultra-low latency, high confidence, and hyper-connectivity and should be based on a new form of split SDN rather than an existing centralized SDN structure, even in the case of the worst condition. And in these SDN structural networks, where automobiles pass through small 5G cells very quickly, the information change cycle, round trip delay (RTD), and the data processing time of SDN are highly correlated with the delay. Of these, RDT is not a significant factor because it has sufficient speed and less than 1 ms of delay, but the information change cycle and data processing time of SDN are factors that greatly affect the delay. Especially, in an emergency of self-driving environment linked to an ITS(Intelligent Traffic System) that requires low latency and high reliability, information should be transmitted and processed very quickly. That is a case in point where delay plays a very sensitive role. In this paper, we study the SDN architecture in emergencies during autonomous driving and conduct analysis through simulation of the correlation with the cell layer in which the vehicle should request relevant information according to the information flow. For simulation: As the Data Rate of 5G is high enough, we can assume the information for neighbor vehicle support to the car without errors. Furthermore, we assumed 5G small cells within 50 ~ 250 m in cell radius, and the maximum speed of the vehicle was considered as a 30km ~ 200 km/hour in order to examine the network architecture to minimize the delay.

A Dynamic Shortest Path Finding Model using Hierarchical Road Networks (도로 위계 구조를 고려한 동적 최적경로 탐색 기법개발)

  • Kim, Beom-Il;Lee, Seung-Jae
    • Journal of Korean Society of Transportation
    • /
    • v.23 no.6 s.84
    • /
    • pp.91-102
    • /
    • 2005
  • When it comes to the process of information storage, people are likely to organize individual information into the forms of groups rather than independent attributes, and put them together in their brains. Likewise, in case of finding the shortest path, this study suggests that a Hierarchical Road Network(HRN) model should be selected to browse the most desirable route, since the HRN model takes the process mentioned above into account. Moreover, most of drivers make a decision to select a route from origin to destination by road hierarchy. It says that the drivers feel difference between the link travel tine which was measured by driving and the theoretical link travel time. There is a different solution which has predicted the link travel time to solve this problem. By using this solution, the link travel time is predicted based on link conditions from time to time. The predicated link travel time is used to search the shortest path. Stochastic Process model uses the historical patterns of travel time conditions on links. The HRN model has compared favorably with the conventional shortest path finding model in tern of calculated speeds. Even more, the result of the shortest path using the HRN model has more similar to the survey results which was conducted to the taxi drivers. Taxi drivers have a strong knowledge of road conditions on the road networks and they are more likely to select a shortest path according to the real common sense.

Development of User Based Recommender System using Social Network for u-Healthcare (사회 네트워크를 이용한 사용자 기반 유헬스케어 서비스 추천 시스템 개발)

  • Kim, Hyea-Kyeong;Choi, Il-Young;Ha, Ki-Mok;Kim, Jae-Kyeong
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.3
    • /
    • pp.181-199
    • /
    • 2010
  • As rapid progress of population aging and strong interest in health, the demand for new healthcare service is increasing. Until now healthcare service has provided post treatment by face-to-face manner. But according to related researches, proactive treatment is resulted to be more effective for preventing diseases. Particularly, the existing healthcare services have limitations in preventing and managing metabolic syndrome such a lifestyle disease, because the cause of metabolic syndrome is related to life habit. As the advent of ubiquitous technology, patients with the metabolic syndrome can improve life habit such as poor eating habits and physical inactivity without the constraints of time and space through u-healthcare service. Therefore, lots of researches for u-healthcare service focus on providing the personalized healthcare service for preventing and managing metabolic syndrome. For example, Kim et al.(2010) have proposed a healthcare model for providing the customized calories and rates of nutrition factors by analyzing the user's preference in foods. Lee et al.(2010) have suggested the customized diet recommendation service considering the basic information, vital signs, family history of diseases and food preferences to prevent and manage coronary heart disease. And, Kim and Han(2004) have demonstrated that the web-based nutrition counseling has effects on food intake and lipids of patients with hyperlipidemia. However, the existing researches for u-healthcare service focus on providing the predefined one-way u-healthcare service. Thus, users have a tendency to easily lose interest in improving life habit. To solve such a problem of u-healthcare service, this research suggests a u-healthcare recommender system which is based on collaborative filtering principle and social network. This research follows the principle of collaborative filtering, but preserves local networks (consisting of small group of similar neighbors) for target users to recommend context aware healthcare services. Our research is consisted of the following five steps. In the first step, user profile is created using the usage history data for improvement in life habit. And then, a set of users known as neighbors is formed by the degree of similarity between the users, which is calculated by Pearson correlation coefficient. In the second step, the target user obtains service information from his/her neighbors. In the third step, recommendation list of top-N service is generated for the target user. Making the list, we use the multi-filtering based on user's psychological context information and body mass index (BMI) information for the detailed recommendation. In the fourth step, the personal information, which is the history of the usage service, is updated when the target user uses the recommended service. In the final step, a social network is reformed to continually provide qualified recommendation. For example, the neighbors may be excluded from the social network if the target user doesn't like the recommendation list received from them. That is, this step updates each user's neighbors locally, so maintains the updated local neighbors always to give context aware recommendation in real time. The characteristics of our research as follows. First, we develop the u-healthcare recommender system for improving life habit such as poor eating habits and physical inactivity. Second, the proposed recommender system uses autonomous collaboration, which enables users to prevent dropping and not to lose user's interest in improving life habit. Third, the reformation of the social network is automated to maintain the quality of recommendation. Finally, this research has implemented a mobile prototype system using JAVA and Microsoft Access2007 to recommend the prescribed foods and exercises for chronic disease prevention, which are provided by A university medical center. This research intends to prevent diseases such as chronic illnesses and to improve user's lifestyle through providing context aware and personalized food and exercise services with the help of similar users'experience and knowledge. We expect that the user of this system can improve their life habit with the help of handheld mobile smart phone, because it uses autonomous collaboration to arouse interest in healthcare.

A Study on the Establishment of Comparison System between the Statement of Military Reports and Related Laws (군(軍) 보고서 등장 문장과 관련 법령 간 비교 시스템 구축 방안 연구)

  • Jung, Jiin;Kim, Mintae;Kim, Wooju
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.3
    • /
    • pp.109-125
    • /
    • 2020
  • The Ministry of National Defense is pushing for the Defense Acquisition Program to build strong defense capabilities, and it spends more than 10 trillion won annually on defense improvement. As the Defense Acquisition Program is directly related to the security of the nation as well as the lives and property of the people, it must be carried out very transparently and efficiently by experts. However, the excessive diversification of laws and regulations related to the Defense Acquisition Program has made it challenging for many working-level officials to carry out the Defense Acquisition Program smoothly. It is even known that many people realize that there are related regulations that they were unaware of until they push ahead with their work. In addition, the statutory statements related to the Defense Acquisition Program have the tendency to cause serious issues even if only a single expression is wrong within the sentence. Despite this, efforts to establish a sentence comparison system to correct this issue in real time have been minimal. Therefore, this paper tries to propose a "Comparison System between the Statement of Military Reports and Related Laws" implementation plan that uses the Siamese Network-based artificial neural network, a model in the field of natural language processing (NLP), to observe the similarity between sentences that are likely to appear in the Defense Acquisition Program related documents and those from related statutory provisions to determine and classify the risk of illegality and to make users aware of the consequences. Various artificial neural network models (Bi-LSTM, Self-Attention, D_Bi-LSTM) were studied using 3,442 pairs of "Original Sentence"(described in actual statutes) and "Edited Sentence"(edited sentences derived from "Original Sentence"). Among many Defense Acquisition Program related statutes, DEFENSE ACQUISITION PROGRAM ACT, ENFORCEMENT RULE OF THE DEFENSE ACQUISITION PROGRAM ACT, and ENFORCEMENT DECREE OF THE DEFENSE ACQUISITION PROGRAM ACT were selected. Furthermore, "Original Sentence" has the 83 provisions that actually appear in the Act. "Original Sentence" has the main 83 clauses most accessible to working-level officials in their work. "Edited Sentence" is comprised of 30 to 50 similar sentences that are likely to appear modified in the county report for each clause("Original Sentence"). During the creation of the edited sentences, the original sentences were modified using 12 certain rules, and these sentences were produced in proportion to the number of such rules, as it was the case for the original sentences. After conducting 1 : 1 sentence similarity performance evaluation experiments, it was possible to classify each "Edited Sentence" as legal or illegal with considerable accuracy. In addition, the "Edited Sentence" dataset used to train the neural network models contains a variety of actual statutory statements("Original Sentence"), which are characterized by the 12 rules. On the other hand, the models are not able to effectively classify other sentences, which appear in actual military reports, when only the "Original Sentence" and "Edited Sentence" dataset have been fed to them. The dataset is not ample enough for the model to recognize other incoming new sentences. Hence, the performance of the model was reassessed by writing an additional 120 new sentences that have better resemblance to those in the actual military report and still have association with the original sentences. Thereafter, we were able to check that the models' performances surpassed a certain level even when they were trained merely with "Original Sentence" and "Edited Sentence" data. If sufficient model learning is achieved through the improvement and expansion of the full set of learning data with the addition of the actual report appearance sentences, the models will be able to better classify other sentences coming from military reports as legal or illegal. Based on the experimental results, this study confirms the possibility and value of building "Real-Time Automated Comparison System Between Military Documents and Related Laws". The research conducted in this experiment can verify which specific clause, of several that appear in related law clause is most similar to the sentence that appears in the Defense Acquisition Program-related military reports. This helps determine whether the contents in the military report sentences are at the risk of illegality when they are compared with those in the law clauses.

An Analysis of IT Trends Using Tweet Data (트윗 데이터를 활용한 IT 트렌드 분석)

  • Yi, Jin Baek;Lee, Choong Kwon;Cha, Kyung Jin
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.1
    • /
    • pp.143-159
    • /
    • 2015
  • Predicting IT trends has been a long and important subject for information systems research. IT trend prediction makes it possible to acknowledge emerging eras of innovation and allocate budgets to prepare against rapidly changing technological trends. Towards the end of each year, various domestic and global organizations predict and announce IT trends for the following year. For example, Gartner Predicts 10 top IT trend during the next year, and these predictions affect IT and industry leaders and organization's basic assumptions about technology and the future of IT, but the accuracy of these reports are difficult to verify. Social media data can be useful tool to verify the accuracy. As social media services have gained in popularity, it is used in a variety of ways, from posting about personal daily life to keeping up to date with news and trends. In the recent years, rates of social media activity in Korea have reached unprecedented levels. Hundreds of millions of users now participate in online social networks and communicate with colleague and friends their opinions and thoughts. In particular, Twitter is currently the major micro blog service, it has an important function named 'tweets' which is to report their current thoughts and actions, comments on news and engage in discussions. For an analysis on IT trends, we chose Tweet data because not only it produces massive unstructured textual data in real time but also it serves as an influential channel for opinion leading on technology. Previous studies found that the tweet data provides useful information and detects the trend of society effectively, these studies also identifies that Twitter can track the issue faster than the other media, newspapers. Therefore, this study investigates how frequently the predicted IT trends for the following year announced by public organizations are mentioned on social network services like Twitter. IT trend predictions for 2013, announced near the end of 2012 from two domestic organizations, the National IT Industry Promotion Agency (NIPA) and the National Information Society Agency (NIA), were used as a basis for this research. The present study analyzes the Twitter data generated from Seoul (Korea) compared with the predictions of the two organizations to analyze the differences. Thus, Twitter data analysis requires various natural language processing techniques, including the removal of stop words, and noun extraction for processing various unrefined forms of unstructured data. To overcome these challenges, we used SAS IRS (Information Retrieval Studio) developed by SAS to capture the trend in real-time processing big stream datasets of Twitter. The system offers a framework for crawling, normalizing, analyzing, indexing and searching tweet data. As a result, we have crawled the entire Twitter sphere in Seoul area and obtained 21,589 tweets in 2013 to review how frequently the IT trend topics announced by the two organizations were mentioned by the people in Seoul. The results shows that most IT trend predicted by NIPA and NIA were all frequently mentioned in Twitter except some topics such as 'new types of security threat', 'green IT', 'next generation semiconductor' since these topics non generalized compound words so they can be mentioned in Twitter with other words. To answer whether the IT trend tweets from Korea is related to the following year's IT trends in real world, we compared Twitter's trending topics with those in Nara Market, Korea's online e-Procurement system which is a nationwide web-based procurement system, dealing with whole procurement process of all public organizations in Korea. The correlation analysis show that Tweet frequencies on IT trending topics predicted by NIPA and NIA are significantly correlated with frequencies on IT topics mentioned in project announcements by Nara market in 2012 and 2013. The main contribution of our research can be found in the following aspects: i) the IT topic predictions announced by NIPA and NIA can provide an effective guideline to IT professionals and researchers in Korea who are looking for verified IT topic trends in the following topic, ii) researchers can use Twitter to get some useful ideas to detect and predict dynamic trends of technological and social issues.

Hybrid Multicast/Broadcast Algorithm for Highly-Demanded Video Services with Low Complexity (Highly-Demanded 비디오 서비스를 위한 낮은 복잡도의 혼합 멀티캐스트/브로드캐스트 알고리즘)

  • Li, Can;Bahk, Sae-Woong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.1B
    • /
    • pp.101-110
    • /
    • 2011
  • With the deployment of broadband networking technology, many clients are enabled to receive various Video on Demand (VoD) services. To support many clients, the network should be designed by considering the following factors: viewer's waiting time, buffer requirement at each client, number of channel required for video delivery, and video segmentation complexity. Among the currently available VoD service approaches, the Polyharmonic and Staircase broadcasting approaches show best performance with respect to each viewer's waiting time and buffer requirement, respectively. However, these approaches have the problem of dividing a video into too many segments, which causes very many channels to be managed and used at a time. To overcome this problem, we propose Polyharmonic-Staircase-Staggered (PSS) broadcasting approach that uses the Polyharmonic and Staircase approaches for the head part transmission and the Staggered approach for the tail part transmission. It is simple and bandwidth efficient. The numerical results demonstrate that our approach shows viewer's waiting time is comparable to that in the Harmonic approach with a slight increase in the bandwidth requirement, and saves the buffer requirement by about 60\% compared to the Harmonic broadcasting approach by simply adjusting the video partitioning coefficient factor. More importantly, our approach shows the best performance in terms of the number of segments and the number of channels managed and used simultaneously, which is a critical factor in real operation of VoD services. Lastly, we present how to configure the system adaptively according to the video partitioning coefficient.

Redesign and Performance Analysis of RTP(Real-time Transport Protocol) for Encryption of VoIP Media Information between Different Communication Networks (이종의 통신망 간에 VoIP 미디어 암호화를 위한 RTP(Real-time Transport Protocol)의 재설계 및 성능 분석)

  • Oh, Hyung-Jun;Park, Jae-Kyoung;Won, Yoo-Hun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.4
    • /
    • pp.87-96
    • /
    • 2013
  • In this paper, we suggest redesigned RTP protocol that is able to perform encryption of VoIP media information for single private network and between the different private networks. And we conduct a test for performance analysis. Such as SRTP or ZRTP methods have been used for VoIP media encryption. But, the existing encryption techniques have problem that can not perform end-to-end encryption between different private networks. In order to solve this problem, in this paper, we redesign RTP protocol. Redesigned RTP includes all information for encryption of VoIP media. Therefore the encryption is not affected by modification of SIP and SDP information that occurred in gateway. Also, redesigned RTP includes code for whether or not to apply encryption. By using the code, modification of RTP header from gateway prevents. As a result, redesigned RTP maintain the integrity and the RTP is able to perform encryption between the different private networks. Also, we conduct a test for performance analysis of SRTP, ZRTP and redesigned RTP.