• Title/Summary/Keyword: real-time kernel

Search Result 228, Processing Time 0.022 seconds

Design and Implementation of Multi-Level scheduling on MicroC/OS-II (MicroC/OS - II 기반에서 Multi-Level 스케줄링의 설계 및 구현)

  • Lim Bosub;Lee Jaeyoon;Kim Kwang;Heu Sin
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.07a
    • /
    • pp.832-834
    • /
    • 2005
  • 임베디드 시스템은 범용 컴퓨팅 시스템과 달리 자신을 포함하고 있는 기기에 부과된 특정 목적의 컴퓨팅 작업만을 수행한다. 이 시스템을 제어하기 위해서 운영체제가 필요로 하며, 임베디드 환경에서는 신뢰성과 정확성을 요하는 부분이 많기 때문에 실시간 운영체제를 필요로 한다. Real-Time kernel을 기반으로 하는 MicroC/OS-II는 수많은 용도로 사용되고 있지만 task 사용에 한계가 있다. 이 논문에서 제안하는 스케줄링은 task의 생성 수를 늘려주지만, 이 경우 task간의 우선순위 설정이 어려워진다. 이 문제 해결을 위해서 task들의 우선순위 결정은 deadline을 이용하여 3레벨로 나눈다. 3레벨로 나누어지면 task의 수가 증가해도 개발자는 task들을 레벨에 맞게 설정하면 task 관리로 인하여 생기는 문제를 줄일 수 있으며, 효율적인 스케줄링을 가능하게 한다.

  • PDF

Two variations of cross-distance selection algorithm in hybrid sufficient dimension reduction

  • Jae Keun Yoo
    • Communications for Statistical Applications and Methods
    • /
    • v.30 no.2
    • /
    • pp.179-189
    • /
    • 2023
  • Hybrid sufficient dimension reduction (SDR) methods to a weighted mean of kernel matrices of two different SDR methods by Ye and Weiss (2003) require heavy computation and time consumption due to bootstrapping. To avoid this, Park et al. (2022) recently develop the so-called cross-distance selection (CDS) algorithm. In this paper, two variations of the original CDS algorithm are proposed depending on how well and equally the covk-SAVE is treated in the selection procedure. In one variation, which is called the larger CDS algorithm, the covk-SAVE is equally and fairly utilized with the other two candiates of SIR-SAVE and covk-DR. But, for the final selection, a random selection should be necessary. On the other hand, SIR-SAVE and covk-DR are utilized with completely ruling covk-SAVE out, which is called the smaller CDS algorithm. Numerical studies confirm that the original CDS algorithm is better than or compete quite well to the two proposed variations. A real data example is presented to compare and interpret the decisions by the three CDS algorithms in practice.

Evaluation of Possibility for the Classification of River Habitat Using Imagery Information (영상정보를 활용한 하천 서식처 분류 가능성 평가)

  • Lee, Geun-Sang;Lee, Hyun-Seok
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.15 no.3
    • /
    • pp.91-102
    • /
    • 2012
  • As the basis of the environmental ecological river management, this research developed a method of habitat classification using imagery information to understand a distribution characteristics of fish living in a natural river. First, topographic survey and investigation of discharge and water temperature were carried out to analyze hydraulic characteristics of fish habitat, and the unmanned aerial photography was applied to acquire river imagery at the observation time. Riffle, pool, and glide regions were selected as river habitat to analyze fish distribution characteristics. Analysis showed that the standard deviation of RGB on the riffle is higher than pool and glide because of fast stream flow. From the classification accuracy estimation on riffle region according to resolution and kernel size using the characteristics of standard deviation of RGB, the highest classification accuracy was 77.17% for resolution with 30cm and kernel size with 11. As the result of water temperature observation on pool and glide using infrared camera, they were $19.6{\sim}21.3^{\circ}C$ and $15.5{\sim}16.5^{\circ}C$ respectively with the differences of $4{\sim}5^{\circ}C$. Therefore it is possible to classify pool and glide region using the infrared photography information. The habitat classification to figure out fish distribution can be carried out more efficiently, if unmanned aerial photography system with RGB and infrared band is applied.

Feasibility Study of the Real-Time IMRT Dosimetry Using a Scintillation Screen (고감도 형광판을 이용한 실시간 선량측정 가능성 연구)

  • Lim Sang Wook;Yi Byong Yong;Ko Young Eun;Ji Young Hoon;Kim Jong Hoon;Ahn Seung Do;Lee Sang Wook;Shin Seong Soo;Kwon Soo-Il;Choi Eun Kyoung
    • Radiation Oncology Journal
    • /
    • v.22 no.1
    • /
    • pp.64-68
    • /
    • 2004
  • Purpose : To study the feasibility of verifying real-time 2-D dose distribution measurement system with the scintillation screen for the quality assurance. Materials and Methods : The water phantom consisted of a scintillation screen (LANEX fast screen, Kodak, USA) that was axially located in the middle of an acrylic cylinder with a diameter of 25 cm. The charge-coupled device (CCD) camera was attached to the phantom In order to capture the visible light from the scintillation screen. To observe the dose distribution In real time, the intensity of the light from the scintillator was converted to a dosage. The isodose contours of the calculations from RTP and those of the measurements using the scintillation screen were compared for the arc therapy and the Intensity modulated radiation therapy (IMRT). Results : The kernel, expressed as a multiplication of two error functions, was obtained in order to correct the sensitivity of the CCD of the camera and the scintillation screen. When comparing the calculated isodose and measured isodose, a discrepancy of less than 8 mm in the high dose region was observed. Conclusion : Using the 2-D dosimetry system, the relationship between the light and the dosage could be found, and real-time verification of the dose distribution was feasible.

VLSI Design of DWT-based Image Processor for Real-Time Image Compression and Reconstruction System (실시간 영상압축과 복원시스템을 위한 DWT기반의 영상처리 프로세서의 VLSI 설계)

  • Seo, Young-Ho;Kim, Dong-Wook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.1C
    • /
    • pp.102-110
    • /
    • 2004
  • In this paper, we propose a VLSI structure of real-time image compression and reconstruction processor using 2-D discrete wavelet transform and implement into a hardware which use minimal hardware resource using ASIC library. In the implemented hardware, Data path part consists of the DWT kernel for the wavelet transform and inverse transform, quantizer/dequantizer, the huffman encoder/huffman decoder, the adder/buffer for the inverse wavelet transform, and the interface modules for input/output. Control part consists of the programming register, the controller which decodes the instructions and generates the control signals, and the status register for indicating the internal state into the external of circuit. According to the programming condition, the designed circuit has the various selective output formats which are wavelet coefficient, quantization coefficient or index, and Huffman code in image compression mode, and Huffman decoding result, reconstructed quantization coefficient, and reconstructed wavelet coefficient in image reconstructed mode. The programming register has 16 stages and one instruction can be used for a horizontal(or vertical) filtering in a level. Since each register automatically operated in the right order, 4-level discrete wavelet transform can be executed by a programming. We synthesized the designed circuit with synthesis library of Hynix 0.35um CMOS fabrication using the synthesis tool, Synopsys and extracted the gate-level netlist. From the netlist, timing information was extracted using Vela tool. We executed the timing simulation with the extracted netlist and timing information using NC-Verilog tool. Also PNR and layout process was executed using Apollo tool. The Implemented hardware has about 50,000 gate sizes and stably operates in 80MHz clock frequency.

Design of a loosely-coupled GPS/INS integration system (약결합 방식의 GPS/INS 통합시스템 설계)

  • 김종혁;문승욱;김세환;황동환;이상정;오문수;나성웅
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.186-196
    • /
    • 1999
  • The CPS provides data with long-term stability independent of passed time and the INS provides high-rate data with short-term stability. By integrating these complementary systems, a highly accurate navigation system can be achieved. In this paper, a loosely-coupled GPS/INS integration system is designed. It is a simple structure and is easy to implement and preserves independent navigation capability of GPS and INS. The integration system consists of a NCU, an IMU, a GPS receiver, and a monitoring system. The navigation algorithm in the NCU is designed under the multi-tasking environment based on a real-time kernel system and the monitoring system is designed using the Visual C++. The integrated Kalman filter is designed as a feedback formed 15-state filter, in which the states are position errors, velocity errors, attitude errors and sensor bias errors. The van test result shows that the integrated system provides more accurate navigation solution then the inertial or the GPS-alone navigation system.

  • PDF

Real-time Fault Diagnosis of Induction Motor Using Clustering and Radial Basis Function (클러스터링과 방사기저함수 네트워크를 이용한 실시간 유도전동기 고장진단)

  • Park, Jang-Hwan;Lee, Dae-Jong;Chun, Myung-Geun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.6
    • /
    • pp.55-62
    • /
    • 2006
  • For the fault diagnosis of three-phase induction motors, we construct a experimental unit and then develop a diagnosis algorithm based on pattern recognition. The experimental unit consists of machinery module for induction motor drive and data acquisition module to obtain the fault signal. As the first step for diagnosis procedure, preprocessing is performed to make the acquired current simplified and normalized. To simplify the data, three-phase current is transformed into the magnitude of Concordia vector. As the next step, feature extraction is performed by kernel principal component analysis(KPCA) and linear discriminant analysis(LDA). Finally, we used the classifier based on radial basis function(RBF) network. To show the effectiveness, the proposed diagnostic system has been intensively tested with the various data acquired under different electrical and mechanical faults with varying load.

A Execution Performance Analysis of Applications using Multi-Process Service over GPU (다중 프로세스 서비스를 이용한 GPU 응용 동시 실행 성능 분석)

  • Kim, Se-Jin;Oh, Ji-Sun;Kim, Yoonhee
    • KNOM Review
    • /
    • v.22 no.1
    • /
    • pp.60-67
    • /
    • 2019
  • Graphical Processing Units(GPUs) achieve high performance undertaking from relatively uniformed computation in parallel. The technology related to General Purpose GPU(GPGPU) has been enhanced, which provides concurrent kernel execution of multi and diverse applications at the same time, but it is still limited to support resource sharing or planning. NVIDIA recently introduces Multi-Process Service(MPS), which allows kernels from different applications can be execute concurrently. However, the strength of MPS comes along with the characteristics of applications and the order of their execution. This paper shows the performance analysis of diverse scientific applications in real world. Based on the analysis, we prove that it is important to the identify characteristics of co-run applications, and to schedule multiple applications via profiling to maximize MPS functionality.

Fixed-Wing UAV's Image-Based Target Detection and Tracking using Embedded Processor (임베디드 프로세서를 이용한 고정익 무인항공기 영상기반 목표물 탐지 및 추적)

  • Kim, Jeong-Ho;Jeong, Jae-Won;Han, Dong-In;Heo, Jin-Woo;Cho, Kyeom-Rae;Lee, Dae-Woo
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.6
    • /
    • pp.910-919
    • /
    • 2012
  • In this paper, we described development of on-board image processing system and its process and verified its performance through flight experiment. The image processing board has single ARM(Advanced Risk Machine) processor. We performed Embedded Linux Porting. Algorithm to be applied for object tracking is color-based image processing algorithm, it can be designed to track the object that has specific color on ground in real-time. To verify performance of the on-board image processing system, we performed flight test using the PNUAV, UAV developed by LAB. Also, we performed optimization of the image processing algorithm and kernel to improve real-time performance. Finally we confirmed that proposed system can track the blue-color object within four pixels error range consistently in the experiment.

A Study on Implementation of Real-Time Multiprocess Trace Stream Decoder (실시간 다중 프로세스 트레이스 스트림 디코더 구현에 관한 연구)

  • Kim, Hyuncheol;Kim, Youngsoo;Kim, Jonghyun
    • Convergence Security Journal
    • /
    • v.18 no.5_1
    • /
    • pp.67-73
    • /
    • 2018
  • From a software engineering point of view, tracing is a special form of logging that records program execution information. Tracers using dedicated hardware are often used because of the characteristics of tracers that need to generate and decode huge amounts of data in real time. Intel(R) PT uses proprietary hardware to record all information about software execution on each hardware thread. When the software execution is completed, the PT can process the trace data of the software and reconstruct the correct program flow. The hardware trace program can be integrated into the operating system, but in the case of the window system, the integration is not tight due to problems such as the kernel opening. Also, it is possible to trace only a single process and not provide a way to trace multiple process streams. In this paper, we propose a method to extend existing PT trace program to support multi - process stream traceability in Windows environment in order to overcome these disadvantages.

  • PDF