• Title/Summary/Keyword: real time motion tracking

Search Result 234, Processing Time 0.029 seconds

Real-Time PTZ Camera with Detection and Classification Functionalities (검출과 분류기능이 탑재된 실시간 지능형 PTZ카메라)

  • Park, Jong-Hwa;Ahn, Tae-Ki;Jeon, Ji-Hye;Jo, Byung-Mok;Park, Goo-Man
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.2C
    • /
    • pp.78-85
    • /
    • 2011
  • In this paper we proposed an intelligent PTZ camera system which detects, classifies and tracks moving objects. If a moving object is detected, features are extracted for classification and then realtime tracking follows. We used GMM for detection followed by shadow removal. Legendre moment is used for classification. Without auto focusing, we can control the PTZ camera movement by using center points of the image and object's direction, distance and velocity. To implement the realtime system, we used TI DM6446 Davinci processor. Throughout the experiment, we obtained system's high performance in classification and tracking both at vehicle's normal and high speed motion.

Real-Time Object Segmentation in Image Sequences (연속 영상 기반 실시간 객체 분할)

  • Kang, Eui-Seon;Yoo, Seung-Hun
    • The KIPS Transactions:PartB
    • /
    • v.18B no.4
    • /
    • pp.173-180
    • /
    • 2011
  • This paper shows an approach for real-time object segmentation on GPU (Graphics Processing Unit) using CUDA (Compute Unified Device Architecture). Recently, many applications that is monitoring system, motion analysis, object tracking or etc require real-time processing. It is not suitable for object segmentation to procedure real-time in CPU. NVIDIA provide CUDA platform for Parallel Processing for General Computation to upgrade limit of Hardware Graphic. In this paper, we use adaptive Gaussian Mixture Background Modeling in the step of object extraction and CCL(Connected Component Labeling) for classification. The speed of GPU and CPU is compared and evaluated with implementation in Core2 Quad processor with 2.4GHz.The GPU version achieved a speedup of 3x-4x over the CPU version.

Efficient Tracking of a Moving Object Using Representative Blocks Algorithm

  • Choi, Sung-Yug;Hur, Hwa-Ra;Lee, Jang-Myung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.678-681
    • /
    • 2004
  • In this paper, efficient tracking of a moving object using optimal representative blocks is implemented by a mobile robot with a pan-tilt camera. The key idea comes from the fact that when the image size of moving object is shrunk in an image frame according to the distance between the camera of mobile robot and the moving object, the tracking performance of a moving object can be improved by changing the size of representative blocks according to the object image size. Motion estimation using Edge Detection(ED) and Block-Matching Algorithm(BMA) is often used in the case of moving object tracking by vision sensors. However these methods often miss the real-time vision data since these schemes suffer from the heavy computational load. In this paper, the optimal representative block that can reduce a lot of data to be computed, is defined and optimized by changing the size of representative block according to the size of object in the image frame to improve the tracking performance. The proposed algorithm is verified experimentally by using a two degree-of-freedom active camera mounted on a mobile robot.

  • PDF

Surf points based Moving Target Detection and Long-term Tracking in Aerial Videos

  • Zhu, Juan-juan;Sun, Wei;Guo, Bao-long;Li, Cheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.11
    • /
    • pp.5624-5638
    • /
    • 2016
  • A novel method based on Surf points is proposed to detect and lock-track single ground target in aerial videos. Videos captured by moving cameras contain complex motions, which bring difficulty in moving object detection. Our approach contains three parts: moving target template detection, search area estimation and target tracking. Global motion estimation and compensation are first made by grids-sampling Surf points selecting and matching. And then, the single ground target is detected by joint spatial-temporal information processing. The temporal process is made by calculating difference between compensated reference and current image and the spatial process is implementing morphological operations and adaptive binarization. The second part improves KALMAN filter with surf points scale information to predict target position and search area adaptively. Lastly, the local Surf points of target template are matched in this search region to realize target tracking. The long-term tracking is updated following target scaling, occlusion and large deformation. Experimental results show that the algorithm can correctly detect small moving target in dynamic scenes with complex motions. It is robust to vehicle dithering and target scale changing, rotation, especially partial occlusion or temporal complete occlusion. Comparing with traditional algorithms, our method enables real time operation, processing $520{\times}390$ frames at around 15fps.

Real-time Stabilization Method for Video acquired by Unmanned Aerial Vehicle (무인 항공기 촬영 동영상을 위한 실시간 안정화 기법)

  • Cho, Hyun-Tae;Bae, Hyo-Chul;Kim, Min-Uk;Yoon, Kyoungro
    • Journal of the Semiconductor & Display Technology
    • /
    • v.13 no.1
    • /
    • pp.27-33
    • /
    • 2014
  • Video from unmanned aerial vehicle (UAV) is influenced by natural environments due to the light-weight UAV, specifically by winds. Thus UAV's shaking movements make the video shaking. Objective of this paper is making a stabilized video by removing shakiness of video acquired by UAV. Stabilizer estimates camera's motion from calculation of optical flow between two successive frames. Estimated camera's movements have intended movements as well as unintended movements of shaking. Unintended movements are eliminated by smoothing process. Experimental results showed that our proposed method performs almost as good as the other off-line based stabilizer. However estimation of camera's movements, i.e., calculation of optical flow, becomes a bottleneck to the real-time stabilization. To solve this problem, we make parallel stabilizer making average 30 frames per second of stabilized video. Our proposed method can be used for the video acquired by UAV and also for the shaking video from non-professional users. The proposed method can also be used in any other fields which require object tracking, or accurate image analysis/representation.

An Robust Control Inderstrial SCARA Robot Manipulator Using TMS320C5X Chip (TMS320C5X 칩을 사용한 산업용 스카라 로봇의 견실제어)

  • 배길호;김용태;김휘동;염만오;한성연
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.173-179
    • /
    • 2002
  • This paper presents a new approach to the design of adaptive control system using DSPs(TMS320C50) fur robotic manipulators to achieve trajectory tracking angles. Digital signal processors are used in implementing real time adaptive control algorithms to provide motion for robotic manipulators. In the proposed scheme, adaptation laws are derived from the improved second stability analysis based on the indirect adaptive control theory. The proposed control scheme is simple in structure, fast in computation, an suitable fur implementation of real-time control. Moreover, this scheme does not require an accurate dynamic modeling, nor values of manipulator parameters and payload. Performance of the adaptive controller is illustrated by experimental results for a SCARA robot.

  • PDF

An Adaptive Control Inderstrial SCARA Robot Manipulator Using TMS320C5X Chip (TMS320C5X 칩을 사용한 산업용 스카라 로봇의 적응제어)

  • 배길호;김용태;김휘동;염만오;한성현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.128-133
    • /
    • 2001
  • This paper presents a new approach to the design of adaptive control system using DSPs(TMS320C50) for robotic manipulators to achieve trajectory tracking angles. Digital signal processors are used in implementing real time adaptive control algorithms to provide motion for robotic manipulators. In the proposed scheme, adaptation laws are derived from the improved second stability analysis based on the indirect adaptive control theory. The proposed control scheme is simple in structure, fast in computation, an suitable for implementation of real-time control. Moreover, this scheme does not require an accurate dynamic modeling, nor values of manipulator parameters and payload. Performance of the adaptive controller is illustrated by experimental results for a SCARA robot.

  • PDF

Real Time Crowd Estimation System Using Embedded Hardware (임베디드 하드웨어 기반 실시간 군중 혼잡도 추정 시스템)

  • Jeong, Cheol-Jun;Park, Kwang-Young;Park, Gooman
    • Journal of Satellite, Information and Communications
    • /
    • v.8 no.4
    • /
    • pp.26-29
    • /
    • 2013
  • In order to estimate people crowdedness in public area, the texture based method or motion based method can be used. In this paper we have proposed a mixed method. By designating the region of interest, we made the degree of crowdedness more accurate. The feature normalization also reduced the image distortion which results from difference of camera angle. The proposed system was optimized to real time embedded hardware system.

Intelligent Control of Industrial Robot Using Neural Network with Dynamic Neuron (동적 뉴런을 갖는 신경회로망을 이용한 산업용 로봇의 지능제어)

  • 김용태
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1996.10a
    • /
    • pp.133-137
    • /
    • 1996
  • This paper presents a new approach to the design of neural control system using digital signal processors in order to improve the precision and robustness. Robotic manipulators have bevome increasingly important in the field of flexible automation. High speed and high-precision trajectory tracking arre indispensable capabilities for their versatile application. the need to meet demanding control requirement in increasingly complex dynamical control systems under sygnificant uncertainties leads toward design of implementing real time neural control to provide an enhanced motion control for robotic manipulators. In this control scheme the ntworks intrduced are neural nets with dynamic neurouns whose dynamics are distributed over all the network nodes. The nets are trained by the distributed dynamic are distributed over all the network nodes. The nets are trained by the distributed dynamic back propagation algorithm. The proposed neural network control scheme is simple in structure fast in computation and suitable for implementation of real-time control, Performance of the neural controller is illustrated by simulation and experimental results for a SCAEA robot.

  • PDF

A Real-Time Control for a Dual Arm Robot Using Neural-Network with Dynamic Neurons

  • Jeong, Kyung-Kyu;Han, Sung-Hyun;Jang, Young-Hee;Lee, Kang-Doo;Kim, Kyung-Yean
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.69.2-69
    • /
    • 2001
  • This paper presents a new approach to the design of neural control system using digital signal processors in order to improve the precision and robustness. Robotic manipulators have become increasingly important in the field of flexible automation. High speed and high-precision trajectory tracking are indispensable capabilities for their versatile application. The need to meet demanding control requirement in increasingly complex dynamical control systems under significant uncertainties, leads toward design of intelligent manipulation robots. The TMS320C31 is used in implementing real time neural control to provide an enhanced motion control for robotic manipulators. In this control scheme, the networks introduced are neural nets with dynamic neurons, whose dynamics are distributed over all the network nodes.

  • PDF