• Title/Summary/Keyword: ready-mixed concrete

Search Result 228, Processing Time 0.023 seconds

Indoor and outdoor pullout tests for retrofit anchors in low strength concrete

  • Cavunt, Derya;Cavunt, Yavuz S.;Ilki, Alper
    • Computers and Concrete
    • /
    • v.18 no.5
    • /
    • pp.951-968
    • /
    • 2016
  • In this study, pullout capacities of post-installed deformed bars anchored in low strength concrete using different bonding materials are investigated experimentally. The experimental study was conducted under outdoor and indoor conditions; on the beams of an actual reinforced concrete building and on concrete bases constructed at Istanbul Technical University (ITU). Ready-mixed cement based anchorage mortar with modified polymers (M1), ordinary cement with modified polymer admixture (M2), and epoxy based anchorage mortar with two components (E) were used as bonding material. Furthermore, test results are compared with the predictions of current analytical models. Findings of the study showed that properly designed cement based mortars can be efficiently used for anchoring deformed bars in low quality concrete. It is important to note that the cost of cement based mortar is much lower with respect to conventional epoxy based anchorage materials.

Statistical Study of Compressive Strength of Concrete in Structures for Irrigation (수리구조물에서 콘크리트 압축강도의 통계분석)

  • 이창수;박광수;신수균;김관호;이준구;김명원
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.11-14
    • /
    • 2003
  • The purpose of this paper is to offer a base data of specification, so that the strength information of concrete in the structure for irrigation can be rationally determined the coefficient of variation of an existing irrigation structure and the best fit the ready-mixed concrete strength to specified strength $f_ck$. From analysis of concrete cylinders from about 30 numbers in southern Korea, it was concluded that the coefficient of variation of cylinder strength were approximately 5.9%. On the basis of the core strength test data, it was appeared that the average coefficient of variation for the existing irrigation structure can be taken as 17.8% for strength level 21MPa.

  • PDF

Experimental Study on Evaluation of Abrasion Resistance of Concrete Irrigation Facilities (콘크리트 수리구조물의 수중마모저항성 평가기술에 관한 실험적 연구)

  • Kim, Meyongwon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.3
    • /
    • pp.123-133
    • /
    • 2018
  • The purpose of this paper is to propose an experimental method to evaluate the resistance of abrasion about 24 MPa, 27 MPa, and 30 MPa compressive strength. These strength are used in the design and construction of concrete hydraulic structures in Korea. The mixing ratios of the ready mixed concrete strengths were investigated countrywide and set the representative mixture proportion ratios of the nine mixed types of OPC, FA and BFS. After making and curing the test specimens, the underwater abrasion test was performed. ASTM C 1138 International Standard was used to fabricate the test equipment, and the surface abrasion resistance of the specimen was tested using the test equipment. In the case of OPC, the 30% abrasion resistance improvement effect was observed at 72 hours as the water-binder ratio decreased. That was reason the coated cement bond strength of the specimen was strong. In the case of BFS and FA, it was improved by 9.9% and 3.8%, respectively, at 72 hours as the water-binder ratio decreased. It was due to the characteristics of the latent hydraulic and pozzolanic reactions. Generally, the relative abrasion resistance of concrete can be evaluated at 24 hours. However, in case of low strength (under 24 MPa), the surface mortar layer wears much faster at the first 12 hours, so it can be considered to evaluate the relative abrasion loss rate at this point.

An Experimental Study on the Properties of Concrete with Regional Fine Aggregate Properties and Modulation of Fine Aggregate Ratio (지역별 잔골재특성 및 잔골재율 조정에 의한 콘크리트 특성에 관한 실험적 연구)

  • Yoo, Seung-Yeup;Lee, Sang-Rae;Lee, Bum-Suck;Song, Yong-Soon;Kang, Suck-Hwa
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.465-468
    • /
    • 2008
  • This study investigated the best condition when mixed sand with a river and crushed sand was used though the experiment for the properties of the concrete corresponding to the control of fine aggregate ratio to apply the mixed sand and properties of the fine aggregate at the ready-mixed concrete factory on Yeongnam and Honam. The physical properties of Yeongnam and Honam is satisfied with KS F 2526 and KS F 2527 except fineness modulus and passing amount of 8mm sieve. And, the mixed sand above two types which were incongruent to use individually was being used at each factory, and it was managed in accordance with KS. The flowabillity of the mixture proportion of concrete which was estimated by method of unit volume weight according to the fine aggregate ratio at each factory on Yeongnam and Honam was higher than existing mixture proportion. It was analyzed that the residual water due to decline of the surface area caused by reducing fine aggregate ratio was increased relatively. Accordingly, it was considered that the effect on the economic mixture proportion and improvement of durability might be possible.

  • PDF

Basic Properties of Cementless Concrete by Main Material as Sludge Solids of Ready Mixed Concrete (레미콘 슬러지 고형분을 주성분으로 하는 무시멘트 콘크리트의 기초적 특성)

  • Byun, Yong-Hyun;Ryu, Dong-woo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.11a
    • /
    • pp.105-106
    • /
    • 2015
  • With an increase of concrete buildings as result of rapid industrialization, Remicon sludge, which is a strong alkaline construction waste, should be neutralized to prevent damage to a natural environment, and the cost of the neutralization processing is increasing as well. Accordingly, this study investigates the mechanical properties of cementless concrete which is processed with recycled water and industrial byproducts in order to determine the possibility of re-using sludge, recycled sand, and gravel which are contained in recycled water.

  • PDF

An Experimental Study on the Structure Application of High Streength Ready Mixed Concrete - part 2 : Properties of Hardened State and Quality Control - (고강도 레미콘의 구조체 적용에 관한 실험적 연구 - 제2보 : 경화상태 특성 및 품질관리 -)

  • 김기철;이진규;윤기철;연흥흠;최강순;한천구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.04a
    • /
    • pp.18-21
    • /
    • 1995
  • Continued from study on fresh concrete properties of the part 1, this study is designed for analyzing to the increasing trend of the compressive strength according to the curing method, standard deviation, strength properties of pumping before and after, and a length change to the drying shrinkage. And for quality control, this study is designed for analyzing the early estimation of compressive strength by hydrometer method in diluted concrete solution at the fresh state, and non-destructive testing by the Schumidt hammer at the hardened state.

  • PDF

Effect of fine fillers from industrial waste and various chemical additives on the placeability of self-compacting concrete

  • Utepov, Yelbek;Akhmetov, Daniyar;Akhmatshaeva, Ilnur
    • Computers and Concrete
    • /
    • v.25 no.1
    • /
    • pp.59-65
    • /
    • 2020
  • The premise for the study reflected in this article is the need to dispose of industrial waste, which is increasingly being used in the construction materials industry. Also, dynamically developing building industry demands attention of scientists and a direction of their works on improvement of the technology of carrying out construction works. Thus, the article is devoted to studying the influence of various chemical additives and fine fillers (industrial wastes) available in Kazakhstan on self-compacting concrete (SCC) mixtures and its rheological, physical, and technical properties. According to the studies, revealed the most efficient type of fine-dispersed filler and the most optimal type of chemical additive to enable obtaining a high-quality SCC mixture based on local raw materials. As a result, the use of microsilica in comparison with other industrial wastes resulted in a conglomerate with high compressive strength of SCC at early terms of curing. In terms of economic efficiency and quality improvement, the results of study are of practical value for the manufacturers of ready-mixed concrete operating in Kazakhstan.

An Experimental Study on Engineering Properties of High-Strength Concrete by Revision Error of the Ratio of Surface Moisture in Fine Aggregate (잔골재의 표면수율 보정오차에 따른 고강도콘크리트의 공학적 특성에 관한 실험적 연구)

  • Kang, Suk-Pyo;Jang, Jong-Ho;Park, Yong-Mock;Lee, Seung-Hoon;Yu, Jae-Chul;Kim, Moo-Han
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.53-56
    • /
    • 2000
  • The performance of high-strength concrete is controlled by the fact, affecting the quality management, especially by revision error in water content of the ratio of surface moisture in fine aggregate. The difference in water content results from the revision error of the ratio of surface moisture and errors in sampled aggregate in the processing ready-mixed concrete plant. This study is to investigate the properties of flowing and hardening by investionally varying the revision error of the ratio of surface moisture in fine aggregate to compare and analyze the variance in quality.

  • PDF

Effect of the Use of Recycled Coarse Aggregate with the size of 5~13mm on the Fundamental Properties of the Concrete (5~13 mm 순환 굵은 골재 혼합 사용이 콘크리트의 기초적 특성에 미치는 영향)

  • Kang, Byeong-Hoe;Jung, Sang-Woon;Zhao, Yang;Hwang, Jin-Guang;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.19-20
    • /
    • 2013
  • Consider about aggregate's price, coarse aggregates from 13 to 25mm were widely used in ready mixed concrete company. But if only use 13 to 25mm aggregates in the concrete, gap grading problem would be occurred. When recycled aggregates from 13 to 25mm was used, continuous grading would increase the durability and strength for the concrete, meanwhile the construction waste materials would also be reused. In this paper, 5-13mm recycled aggregates was utilized, to analyse the fundamental properties for concrete, strength has been tested to evaluate the quality and reusing effect of the recycled materials.

  • PDF

Influence of Specimen Geometries on the Compressive Strength of Lightweight Aggregate Concrete (경량골재 콘크리트의 압축강도에 대한 시험체 기하학적 특성의 영향)

  • Sim, Jae-Il;Yang, Keun-Hyeok
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.3
    • /
    • pp.333-340
    • /
    • 2012
  • The current study prepared 9 laboratorial concrete mixes and 3 ready-mixed concrete batches to examine the size and shape effects in compression failure of lightweight aggregate concrete (LWC). The concrete mixes were classified into three groups: normal-weight, all-lightweight and sand-lightweight concrete groups. For each concrete mix, the aspect ratio of circular or square specimens was 1.0 and 2.0. The lateral dimension of specimens varied between 50 and 150 mm for each laboratorial concrete mix, whereas it ranged from 50 to 400 mm with an incremental variation of 50 mm for each ready-mixed concrete batch. Test observations revealed that the crack propagation and width of the localized failure zone developed in lightweight concrete specimens were considerably different than those of normal-weight concrete (NWC). In LWC specimens, the cracks mainly passed through the coarse aggregate particles and the crack distribution performance was very poor. As a result, a stronger size effect was developed in LWC than in NWC. Especially, this trend was more notable in specimens with aspect ratio of 2.0 than in specimens with that of 1.0. The prediction model derived by Kim et al. overestimated the size effect of LWC when lateral dimension of specimen is above 150 mm. On the other hand, the modification factors specified in ASTM and CEB-FIP provisions, which are used to compensate for the shape effect of specimen on compressive strength, were still conservative in LWC.