• Title/Summary/Keyword: reactivity ratio

Search Result 250, Processing Time 0.02 seconds

A Study on Synthesis of Ca and Mg Compounds from Dolomite with Salt Additional React (MgCl2·6H2O) (염 첨가 반응(MgCl2·6H2O)을 이용하여 백운석으로부터 Ca 화합물과 Mg 화합물 합성에 관한 연구)

  • Hwang, Dae Ju;Yu, Young Hwan;Cho, Kye Hong;Lee, Jong Dae
    • Korean Chemical Engineering Research
    • /
    • v.59 no.3
    • /
    • pp.399-409
    • /
    • 2021
  • In order to utilize dolomite as a calcium/magnesium compound material, it was prepared highly reactive calcined dolomite(CaO·MgO) using a microwave kiln (950 ℃, 60 min). The experiment was performed according to the standard of the hydration test (ASTM C 110) and hydration reactivity was analyzed as medium reactivity (max 74.1 ℃, 5 min). Experiments were performed with calcined dolomite and salt (MgCl2·6H2O) (a) 1:1, (b) 1:1.5, and (c) 1:2 wt% based on the hydration reaction of calcined dolomite. The result of X-ray diffraction analysis confirmed that MgO of calcined dolomite increased to Mg(OH)2 as the salt addition ratio increased. After the separating reaction, calcium was stirred at 80 ℃, 24 hr that produced CaCl2 of white crystal. XRD results, it was confirmed calcium chloride hydrate (CaCl2·(H2O)x) and CaO of calcined dolomite and salt additional reaction was separated into CaCl2. And it was synthesized with Ca(OH)2 99 wt% by NaOH adding reaction to the CaCl2 solution, and the synthesized Ca(OH)2 was manufactured CaO through the heat treatment process. In order to prepare calcium carbonate, CaCO3 was synthesized by adding Na2CO3 to CaCl2 solution, and the shape was analyzed in cubic form with a purity of 99 wt%.

Effects of Limestone Powder and Silica Fume on the Hydration and Pozzolanic Reaction of High-Strength High-Volume GGBFS Blended Cement Mortars (고강도 고함량 고로슬래그 혼합 시멘트 모르터의 수화 및 포졸란 반응에 미치는 석회석 미분말과 실리카퓸의 영향)

  • Jeong, Ji-Yong;Jang, Seung-Yup;Choi, Young-Cheol;Jung, Sang-Hwa;Kim, Sung-Il
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.2
    • /
    • pp.127-136
    • /
    • 2015
  • To evaluate the effects of limestone powder and silica fume on the properties of high-strength high-volume ground granulated blast-furnace slag (GGBFS) blended cement concrete, this study investigated the rheology, strength development, hydration and pozzolanic reaction characteristics, porosity and pore size distribution of high-strength mortars with the water-to-binder ratio of 20, 50 to 80% GGBFS, up to 20% limestone powder, and up to 10% silica fume. According to test results, compared with the Portland cement mixture, the high-volume GGBFS mixture had much higher flow due to the low surface friction of GGBFS particles and higher strength in the early age due to the accelerated cement hydration by increase of free water; however, because of too low water-to-binder ratio and cement content, and lack of calcium hydroxide content, the pozzolanic reactio cannot be activated and the long-term strength development was limited. Limestone powder did not affect the flowability, and also accelerate the early cement hydration. However, because its effect on the acceleration of cement hydration is not greater than that of GGBFS, and it does not have hydraulic reactivity unlikely to GGBFS, compressive strength was reduced proportional to the replacement ratio of limestone powder. Also, silica fume and very fine GGBFS lowered flow and strength by absorbing more free water required for cement hydration. Capillary porosities of GGBFS blended mortars were smaller than that of OPC mortar, but the effect of limestone powder on porosity was not noticeable, and silica fume increased porosity due to low degree of hydration. Nevertheless, it is confirmed that the addition of GGBFS and silica fume increases fine pores.

NOx Emission Characteristics with Operating Conditions of SNCR in SRF Usage Facilities (고형연료제품 사용시설에서의 SNCR의 운전조건에 따른 NOx 배출특성)

  • Seo, Je-Woo;Kim, Younghee
    • Clean Technology
    • /
    • v.27 no.4
    • /
    • pp.350-358
    • /
    • 2021
  • The results of this study shows that the combustor temperature ranged from 848.27 to 1,026.80 ℃, averaging about 976.61 ℃, and the NOx concentration increased as the temperature increased. The urea usage ranged from 291.00 to 693.00 kg d-1, averaging about 542.34 kg d-1, and the NOx concentration decreased as the urea usage increased. Residence time was about 3.38 to 9.17 s, averaging about 5.22 s, about 2.61 times larger than the 2 s of the design details. This is 1,086 kg h-1, averaging about 55.71%, compared to the 1,950 kg h-1 SRF input permission standard. The combustion chamber area is constant, but the residence time is shown to increase with the decrease of exhaust gas. The O2/CO ratio was 847.05 to 14,877.34, averaging about 3,111.30, and the NOx concentration slightly increased as the O2/CO ratio increased. As the combustor temperature and O2/CO ratio increased, the combustion reaction with nitrogen in the air increased and the NOx concentration slightly increased. As the urea usage and residence time increased, the NOx concentration decreased slightly with an increase in reactivity with NOx. The NOx concentration at the stack ranged from 7.88 to 34.02 ppm with an average of 19.92 ppm, and was discharged within the 60 ppm emission limit value. The NOhx emission factor was 1.058 to 1.795 kg ton-1, averaging about 1.450 kg ton-1. This value was about 24.87% of the maximum emission factor of 5.830 kg ton-1 of other solid fuels. Other synthetic resins and industrial wastes were 79.80% and 43.65% compared to 1.817 kg ton-1 and 3.322 kg ton-1, respectively. This value was similar to 1.400 kg ton-1 of RDF in the NIER notice (2005-9), 10.98% compared to the maximum SRF of 13.210 kg ton-1. Therefore, the NOx emission factor had a large deviation.

The Relationships between Plasma Insulin-like Growth Factor (IGF)-1 and IGF-Binding Proteins (IGFBPs) to Growth Pattern, and Characteristics of Plasma IGFBPs in Steers

  • Lee, H.G.;Hidari, H.;Kang, S.K.;Hong, Z.S.;Xu, C.X.;Kim, S.H.;Seo, K.S.;Yoon, D.H.;Choi, Y.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.11
    • /
    • pp.1575-1581
    • /
    • 2005
  • This study was conducted to determine the characteristics of IGFBPs in plasma of steers, and to profile the relationship between growth and plasma IGF-1 and IGFBPs with aging in Holstein steers. Four blots of IGFBP at molecular weights of 38-43, 34, 29-32 and 24 kDa bands were detected by western ligand blot assay using $^{125}I-IGF-1$. On the basis of immunoblotting with anti-bovine IGFBP-2 and -3 antiserums, we observed the band for IGFBP-2 at approximately 34 kDa, and the IGFBP-3 band was detected at 38-43 kDa and 34 kDa in adult steers and calves. The IGFBP-3 antiserum used on the blots exhibited significant cross-reactivity with 34 kDa IGFBP-2. Furthermore, the 38-43 kDa IGFBP-3 bands were reduced to a 36 kDa band after deglycosylation, whereas the 34 kDa IGFBP-2 was intact. The plasma IGF-1, IGFBP-3 and other IGFBPs showed stability throughout a whole day. The change in live weight was found to be positively correlated to the plasma IGF-1 concentration (r = 0.6801, n = 64, p<0.05) and plasma IGFBP-3 (r = 0.6321, n = 64, p<0.05), while inversely correlated to plasma IGFBP-2 (r = -0.2919, n = 64, p<0.05). Furthermore, plasma IGF-1 was positively correlated to plasma IGFBP-3 (r = 0.6191, p<0.001), but was not correlated to plasma IGFBP-2. The portion of IGFBP-2 for total IGFBPs in calves was higher than in adult steers (p<0.05) and was decreased with growth, whereas that of IGFBP-3 was increased with increased live weight (p<0.05). The ratio IGFBP-3 for IGFBP-2 (BP-3/BP-2) was increased with growing of liveweight. Therefore, the changes in plasma IGF-1 level with increased liveweight may be related to the changes in plasma IGFBP-3 level and IGFBP-2 may give an important role in anabolic action of IGF-1 with the growth of body during calfhood in Holstein steers.

Reaction Characteristics of Kaolinite-based Additives and Alkali Salts (Kaolinite 계열의 첨가제와 알칼리염의 반응 특성)

  • Jun, HyunJi;Choi, Yujin;Shun, Dowon;Han, Keun-Hee;Bae, Dal-Hee;Rhee, Young-Woo
    • Clean Technology
    • /
    • v.26 no.3
    • /
    • pp.221-227
    • /
    • 2020
  • When the waste solid fuel (SRF, Bio-SRF) is burnt in a boiler, a problem occurs in the combustion process involving the alkali components (Na, K) contained in large amounts in the fuel. The alkaline component has a low melting point, which usually forms low melting point salt in the temperature of the furnace, with the resulting low melting point salts attaching to the heat pipe to form a clinker. Various additives are used to suppress clinker generation, and the additive based on the kaolinite has alkali-aluminum-silica to inhibit the clinker. In this study, the reactivity of the additives based on the kaolinite was compared. The additives utilized were R-kaolinite, B-kaolinite, and A-kaolinite. Also silica and MgO were sourced as the comparison group. The experimental group was employed as a laboratory-scale batch horizontal reactor. The additive and alkaline salts were reacted at a weight ratio of 1 : 1, and the reaction temperature was performed at 900 ℃ for 10 hours. The first measurement of HCl occurring during the experiment was performed 30 minutes after the detection tube was used, and the process was repeated every hour after the experiment. After the reaction, solid residues were photographed for characterization analysis by means of an optical microscope. The reaction characteristics of the kaolinite were confirmed based on the analysis results.

The Engineering Properties of High Fluidity mortar with High Volume Slag Cement (고유동 대량치환 슬래그 모르타르의 공학적 특성)

  • Bae, Ju-Ryong;Kim, Tae-Wan;Kim, In-Tae;Kim, Min-Jeong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.5
    • /
    • pp.12-20
    • /
    • 2017
  • This report presents the results of an investigation on the fundamental properties of mortars high fluidity high volume slag cement(HVSC) activated with sodium silicate($Na_2SiO_3$). The ordinary Portland cement(OPC) was replaced by ground granulated blast furnace slag(GGBFS) from 40% to 80% and calcium sulfoaluminate(CSA) was 2.5% or 5.0% mass. The $Na_2SiO_3$ was added at 2% and 4% by total binder(OPC+GGBFS+CSA) weight. A constant water-to-binder ratio(w/b)=0.35 was used for all mixtures. The research carried out the mini slump, V-funnel, setting time, compressive strength and drying shrinkage. The experimental results showed that the contents of superplasticizer, V-funnel, setting time and drying shrinkage increased as the contents of CSA and $Na_2SiO_3$ increase. The compressive strength increases with and an increase in CSA and $Na_2SiO_3$. One of the major reason for these results is the accelerated reactivity of GGBFS with CSA and $Na_2SiO_3$. The maximum performance was CSA 5.0% + $Na_2SiO_3$ 4% specimens.

Effect of the pH of Pyrophoric Synthetic Solution on the Formation Kinetics of Y1Ba2Cu3O7-x Superconducting Phase (발화합성용액의 pH가 Y1Ba2Cu3O7-x 초전도상 생성 속도에 미치는 영향)

  • Park, J.S.;Kim, Y.S.;Yang, S.W.;Kim, C.Y.;Shin, H.S.
    • Applied Chemistry for Engineering
    • /
    • v.9 no.2
    • /
    • pp.165-171
    • /
    • 1998
  • The $Y_1Ba_2Cu_3O_{7-x}$(123) superconductor powders were prepared by pyrophoric synthesis method(PSM) using $Y_2O_3$(99.9%), $BaCO_3$(99.9%), and CuO(99.9%) powders. The phase formation and reaction kinetics of 123 superconductor manufactured with powders prepared in various pHs of pyrophoric synthetic solution have been studied through the experiments at various heat treatment temperatures and times. Inductively coupled plasma(ICP) spectroscopy and scanning electron microscopy(SEM) measurements were performed to examine the composition and morphology of the sample. X-ray diffraction(XRD) analysis was done to determine phase formation and conversion ratio of Y-Ba-Cu-O systems. The 123 powder prepared at pH 7(${\pm}0.3$) yields the best result in terms of purity, homogeneity, and reactivity. The activation energies(${\Delta}E_a$) of 123 phase formation were found to be 191 kJ/mol and 230kJ/mol in solid state reaction method and pyrophoric synthesis method, respectively.

  • PDF

Simulation of Rare Earth Elements Removal Behavior in TRU Product Using HSC Chemistry Code (HSC Chemistry 코드를 이용한 TRU 생성물 중의 희토류 원소 제거 거동 모사)

  • Paek, Seungwoo;Lee, Chang Hwa;Yoon, Dalsung;Lee, Sung-Jai
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.2
    • /
    • pp.207-215
    • /
    • 2020
  • The feasibility of rare earth (RE) removal process via oxidation reactions with UCl3 was investigated using the HSC Chemistry code to reduce the concentrations of RE in transuranic (TRU) products. The composition and thermodynamic data of TRU and RE elements contained in the reference spent fuel were examined. The reactivity was evaluated by calculating equilibrium data considering oxidation reactions with UCl3. Both RE removal rate and TRU recovery rate were evaluated for the two cases, wherein TRU products with different RE concentrations were used. When TRU products were reacted with UCl3, selective oxidation was driven by the difference in the Gibbs free energy of each element. The calculation results imply that the TRU/RE ratio of the final product can be increased by removing RE elements while maintaining the maximum recovery rate of TRU, which is accomplished by controlling the amount of UCl3 injected. Since the results of this study are based on thermodynamic equilibrium data, there are many limitations to apply to the actual process. However, it is expected to be used as an important data for the process design to supply the TRU product of pyroprocessing to SFR's fuel demanding low RE concentrations.

Preparation of MFI Zeolite Catalyst Supported on Silicalite Foam and Its Catalytic Property in the Cracking of n-Octane (실리카라이트 폼에 담지된 MFI 제올라이트 촉매의 제조와 n-옥탄 분해반응에서 이들의 촉매 성질)

  • Jung, Je Sik;Choi, Dong Bae;Song, Kyeong Keun;Ha, Kwang;Song, Yo Soon;Seo, Gon
    • Korean Chemical Engineering Research
    • /
    • v.43 no.4
    • /
    • pp.452-457
    • /
    • 2005
  • Foam-type MFI zeolite catalyst was prepared by dispersing fine ($-0.2{\mu}m$) particles of MFI zeolite on silicalite foam. Catalytic cracking of n-octane was investigated over the foam-type catalyst and Delplot method was employed to interpret product compositions for deducing reaction mechanism. The Si/Al molar ratio of dispersed MFI zeolite was estimated 25 and its dispersed amount of silicalite foam was 25 wt%. Since the apparent density of the foam type catalyst was very low $0.11g{\cdot}cm^{-3}$, the catalyst loading amount could be varied from 0.02 g to 0.5 g without concerning pressure drop, providing a wide variance in the residence time of the reactants and products. The conversion and olefin yield in the catalytic cracking of n-octane increased with the catalyst loading. The product composition was very simple and could be explained by applying the protolytic cracking mechanism when the catalyst loading was small. Higher loading of the catalyst brought about further reactions of cracked products, accumulating lower olefin and paraffin with low reactivity in product stream and resulting in complex product composition.

The Sensitization Rates for Inhaled Allergens by Skin Prick Test among Some Farmers in Gyeonggi Province, South Korea (피부 단자 검사로 평가한 경기도 일부 농업인의 흡입 알레르겐 감작률)

  • Kim, Hogil;Lee, Ji-Hoon;Roh, Soo-Yong;Lee, HyangSeok;Kwon, Soon-Chan;Lee, Soo-Jin
    • Journal of agricultural medicine and community health
    • /
    • v.40 no.4
    • /
    • pp.240-249
    • /
    • 2015
  • Objectives: Farmers are known to be exposed to a variety of allergens related to the work environment. This study was conducted to determine the sensitization rates as well as South Korea that they are sensitized to certain allergens farmers through the skin prick test. Methods: By targeting a total of 1143 people living in the rural town of Gyeonggi Province, it was conducted a questionnaire containing demographic and occupational risk factors and underwent skin prick tests with 15 types of allergens(including positive and negative controls). Multivariable logistic regression analysis was used to analyze the association between occupational risk factors and skin prick test positivity. Results: Except for the 30 people whose result is invalid, positive rate of the skin prick test was 18.6% in 1,113 people. The species of house dust mite, Dermatophagoides pteronyssinus and Dermatophagoides farinae was the highest at 8.7% and 8.6%. After adjusted by age, gender, smoking and education level, odds ratio of flower plant farmers is 4.467(95% CI: 2.094-9.527) and fruit farmer is 2.275(95% CI: 1.096-4.721). In addition, the rate of sensitization to grass pollen mixture of the flower plant farmers is significantly higher(15.9%, p<0.001) than other allergens. Conclusions: Even farmers, the rate of sensitization to allergens related to the general environment, such as house dust mite is relatively dominant. However, given the presence of potential cross-reactivity between the allergens or distribution showed that the unique aspects of allergen sensitization in the flower growers, occupational cause is not be completely ruled out.