• Title/Summary/Keyword: reaction-diffusion modeling

Search Result 42, Processing Time 0.026 seconds

A reaction-diffusion modeling of carbonation process in self-compacting concrete

  • Fu, Chuanqing;Ye, Hailong;Jin, Xianyu;Jin, Nanguo;Gong, Lingli
    • Computers and Concrete
    • /
    • v.15 no.5
    • /
    • pp.847-864
    • /
    • 2015
  • In this paper, a reaction-diffusion model of carbonation process in self-compacting concrete (SCC) was realized with a consideration of multi-field couplings. Various effects from environmental conditions, e.g. ambient temperature, relative humidity, carbonation reaction, were incorporated into a numerical simulation proposed by ANSYS. In addition, the carbonation process of SCC was experimentally investigated and compared with a conventionally vibrated concrete (CVC). It is found that SCC has a higher carbonation resistance than CVC with a comparable compressive strength. The numerical solution analysis agrees well with the test results, indicating that the proposed model is appropriate to calculate and predict the carbonation process in SCC. The parameters sensitivity analysis also shows that the carbon dioxide diffusion coefficient and moisture field are essentially crucial to the carbonation process in SCC.

BIFURCATION ANALYSIS OF A SINGLE SPECIES REACTION-DIFFUSION MODEL WITH NONLOCAL DELAY

  • Zhou, Jun
    • Journal of the Korean Mathematical Society
    • /
    • v.57 no.1
    • /
    • pp.249-281
    • /
    • 2020
  • A reaction-diffusion model with spatiotemporal delay modeling the dynamical behavior of a single species is investigated. The parameter regions for the local stability, global stability and instability of the unique positive constant steady state solution are derived. The conditions of the occurrence of Turing (diffusion-driven) instability are obtained. The existence of time-periodic solutions, the existence and nonexistence of nonconstant positive steady state solutions are proved by bifurcation method and energy method. Numerical simulations are presented to verify and illustrate the theoretical results.

Modeling of diffusion-reaction behavior of sulfate ion in concrete under sulfate environments

  • Zuo, Xiao-Bao;Sun, Wei;Li, Hua;Zhao, Yu-Kui
    • Computers and Concrete
    • /
    • v.10 no.1
    • /
    • pp.79-93
    • /
    • 2012
  • This paper estimates theoretically the diffusion-reaction behaviour of sulfate ion in concrete caused by environmental sulfate attack. Based on Fick's second law and chemical reaction kinetics, a nonlinear and nonsteady diffusion-reaction equation of sulfate ion in concrete, in which the variable diffusion coefficient and the chemical reactions depleting sulfate ion concentration in concrete are considered, is proposed. The finite difference method is utilized to solve the diffusion-reaction equation of sulfate ion in concrete, and then it is used to simulate the diffusion-reaction process and the concentration distribution of sulfate ion in concrete. Afterwards, the experiments for measuring the sulfate ion concentration in concrete are carried out by using EDTA method to verify the proposal model, and results show that the proposed model is basically in agreement with the experimental results. Finally, Numerical example has been completed to investigate the diffusion-reaction behavior of sulfate ion in the concrete plate specimen immersed into sulfate solution.

Modeling and Simulation of the Photocatalytic Treatment of Wastewater using Natural Bauxite and TiO2 doped by Quantum Dots

  • Becheikh, Nidhal;Eladeb, Aboulbaba;Ghazouani, Nejib
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.6
    • /
    • pp.91-96
    • /
    • 2022
  • The photocatalytic degradation of salicylic acid takes place in several stages involving coupled phenomena, such as the transport of molecules and the chemical reaction. The systems of transport equations and the photocatalytic reaction are numerically solved using COMSOL Mutiphysics (CM) simulation software. CM will make it possible to couple the phenomena of flow, the transport of pollutants (salicylic acid) by convection and diffusion, and the chemical reaction to the catalytic area (bauxite or TiO2 doped by nanoparticles). The simulation of the conversion rate allows to correctly fit the experimental results. The temporal simulation shows that the reaction reaches equilibrium after a transitional stage lasting over one minute. The outcomes of the study highlight the importance of diffusion in the boundary layer and the usefulness of injecting micro-agitation into the microchannel flow. Under such conditions, salicylic acid degrades completely.

Study on the Strategy of Numerical Modeling for Hybrid Combustion (하이브리드 연소의 수치 모델링 전략에 관한 연구)

  • Yoon, Changjin;Kim, Jinkon;Moon, Heejang
    • Journal of Aerospace System Engineering
    • /
    • v.1 no.2
    • /
    • pp.37-42
    • /
    • 2007
  • This paper proposes a numerical modeling approach to simulate the hybrid combustion phenomena. From the physical understandings of hybrid combustion, the computational domain was separated into three regions: the solid fuel, gas phase reactive flow, and the interface between solid and fluid. Moreover, for the accurate calculation, computational grids for these regions was generated at every time step considering the instantaneous moving interface which are governed by the balance equations using thermal pyrolysis. In the domain of reactive flow, by virtue of diffusion flame structure, turbulent combustion modeling was introduced using either mixture fraction approach or mean reaction rate approach.

  • PDF

Multiscale modeling of smectite illitization in bentonite buffer of engineered barrier system

  • Xinwei Xiong;Jiahui You;Kyung Jae Lee;Jin-Seop Kim
    • Nuclear Engineering and Technology
    • /
    • v.56 no.8
    • /
    • pp.3242-3254
    • /
    • 2024
  • With the increasing usage of nuclear energy, how to properly dispose nuclear waste becomes a critical issue. In this study, a multiscale modeling approach combining the experimental findings is presented to address the illitization process, its impact on transport properties, and system behavior of bentonite buffer in engineered barrier systems (EBS). Through the pore-scale modeling, reactive transport properties such as illite generation rate and effective diffusion coefficient of potassium ion as a function of porosity and temperature are quantified by employing the findings of hydrothermal reaction experiments of Bentonil-WRK. The capability of pore-scale modeling has been developed based on the Darcy-Brinkmann-Stokes equation, involving the processes of smectite illitization and clay swelling. Obtained reactive transport properties are utilized as input parameters for the macroscale modeling to predict the long-term behavior of bentonite buffer in EBS. As such, this study involves the whole workflow of quantifying the reaction parameters of smectite illitization through the hydrothermal reaction experiments, and numerically modeling the reactive transport process of smectite illitization in bentonite buffer of EBS from pore-scale to macroscale. The presented multiscale modeling findings are expected to provide reliable solution for safe nuclear waste disposal with EBS.

An Introduction to Kinetic Monte Carlo Methods for Nano-scale Diffusion Process Modeling (나노 스케일 확산 공정 모사를 위한 동력학적 몬테칼로 소개)

  • Hwang, Chi-Ok;Seo, Ji-Hyun;Kwon, Oh-Seob;Kim, Ki-Dong;Won, Tae-Young
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.6
    • /
    • pp.25-31
    • /
    • 2004
  • In this paper, we introduce kinetic Monte Carlo (kMC) methods for simulating diffusion process in nano-scale device fabrication. At first, we review kMC theory and backgrounds and give a simple point defect diffusion process modeling in thermal annealing after ion (electron) implantation into Si crystalline substrate to help understand kinetic Monte Carlo methods. kMC is a kind of Monte Carlo but can simulate time evolution of diffusion process through Poisson probabilistic process. In kMC diffusion process, instead of. solving differential reaction-diffusion equations via conventional finite difference or element methods, it is based on a series of chemical reaction (between atoms and/or defects) or diffusion events according to event rates of all possible events. Every event has its own event rate and time evolution of semiconductor diffusion process is directly simulated. Those event rates can be derived either directly from molecular dynamics (MD) or first-principles (ab-initio) calculations, or from experimental data.

Modeling of chloride diffusion in a hydrating concrete incorporating silica fume

  • Wang, Xiao-Yong;Park, Ki-Bong;Lee, Han-Seung
    • Computers and Concrete
    • /
    • v.10 no.5
    • /
    • pp.523-539
    • /
    • 2012
  • Silica fume has long been used as a mineral admixture to improve the durability and produce high strength and high performance concrete. And in marine and coastal environments, penetration of chloride ions is one of the main mechanisms causing concrete reinforcement corrosion. In this paper, we proposed a numerical procedure to predict the chloride diffusion in a hydrating silica fume blended concrete. This numerical procedure includes two parts: a hydration model and a chloride diffusion model. The hydration model starts with mix proportions of silica fume blended concrete and considers Portland cement hydration and silica fume reaction respectively. By using the hydration model, the evolution of properties of silica fume blended concrete is predicted as a function of curing age and these properties are adopted as input parameters for the chloride penetration model. Furthermore, based on the modeling of physicochemical processes of diffusion of chloride ion into concrete, the chloride distribution in silica fume blended concrete is evaluated. The prediction results agree well with experiment results of chloride ion concentrations in the hydrating concrete incorporating silica fume.

Modeling of damage in cement paste subject to external sulfate attack

  • Xiong, Chuansheng;Jiang, Linhua;Zhang, Yan;Chu, Hongqiang
    • Computers and Concrete
    • /
    • v.16 no.6
    • /
    • pp.847-864
    • /
    • 2015
  • This study aimed to develop models of sulfate diffusion and ettringite content profile in cement paste for the predication of the damage behavior in cement paste subject to external sulfate. In the models, multiphase reaction equilibrium between ions in pore solution and solid calcium aluminates phases and the microstructure changes in different positions of cement paste were taken into account. The distributions of expansive volume strain and expansion stress in cement paste were calculated based on the ettringite content profile model. In addition, more sulfate diffusion tests and SEM analyses were determined to verify the reliability and veracity of the models. As the results shown, there was a good correlation between the numerical simulation results and experimental evidences. The results indicated that the water to cement ratio (w/c) had a significant influence on the diffusion of sulfate ions, ettringite concentration profile and expansion properties in cement paste specimens. The cracking points caused by ettringite growth in cement paste specimens were predicted through numerical methods. According to the simulation results, the fracture of cement paste would be accelerated when the specimens were prepared with higher w/c or when they were exposed to sulfate solution with higher concentration.

Computational Modeling of Cyclic Voltammetry on Multi-electron Electrode Reaction using Diffusion Model (확산모델을 이용한 다중전자 전극반응에 대한 순환전위법의 전산모델링)

  • Cho, Ha-Na;Yoon, Do-Young
    • Journal of the Korean Electrochemical Society
    • /
    • v.15 no.3
    • /
    • pp.165-171
    • /
    • 2012
  • Here is implemented MATLAB program to analyze the characteristic curves of cyclic voltammetry which involves the multi-electron electrode reaction considered as key processes in electrochemical systems. For the electrochemical mass-transfer system, Fick's concentration equation subject to semi-infinite diffusion model for the boundary condition was discretized and solved by the explicit finite difference method. The resulting concentration values were converted into currents at each node by using Butler-Volmer equation. Based on the good agreement between the present numerical solution and the existing experimental results, effects of kinetic constants and CV scan rates on the reaction mechanism in multi-electron transfer processes were investigated effectively.