DOI QR코드

DOI QR Code

Computational Modeling of Cyclic Voltammetry on Multi-electron Electrode Reaction using Diffusion Model

확산모델을 이용한 다중전자 전극반응에 대한 순환전위법의 전산모델링

  • Cho, Ha-Na (Department of Chemical Engineering, Kwangwoon University) ;
  • Yoon, Do-Young (Department of Chemical Engineering, Kwangwoon University)
  • 조하나 (광운대학교 화학공학과/녹색기술연구소) ;
  • 윤도영 (광운대학교 화학공학과/녹색기술연구소)
  • Received : 2012.07.31
  • Accepted : 2012.08.13
  • Published : 2012.08.31

Abstract

Here is implemented MATLAB program to analyze the characteristic curves of cyclic voltammetry which involves the multi-electron electrode reaction considered as key processes in electrochemical systems. For the electrochemical mass-transfer system, Fick's concentration equation subject to semi-infinite diffusion model for the boundary condition was discretized and solved by the explicit finite difference method. The resulting concentration values were converted into currents at each node by using Butler-Volmer equation. Based on the good agreement between the present numerical solution and the existing experimental results, effects of kinetic constants and CV scan rates on the reaction mechanism in multi-electron transfer processes were investigated effectively.

본 연구에서는 전기화학계에서 중요한 다중전자의 이동이 수반되는 전극 반응에 대하여 순환전위법의 특성곡선을 모델링하여, MATLAB 프로그램으로 구현하였다. 전극주변의 전기화학 물질전달계에 대하여 반무한 확산모델의 경계조건을 설정하였고, Fick의 농도방정식은 유한차분법으로 전개하여 수치해를 구하였고, Butler-Volmer 식으로부터 계산된 농도값을 전류의 값으로 전환하였다. 본 연구에서 구현된 수치해는 기존의 실험치들과 합리적으로 설명하고 있었으며, 이를 근거로 다중전자 전기화학 반응계에서 반응메카니즘에 대한 전극반응속도 상수와 CV 주사속도 영향을 효과적으로 해석할 수 있었다.

Keywords

References

  1. K. B. Oldham and J. C. Myland, "Fundamentals of Electrochemical Science" Academic Press, London (1994).
  2. P. N. Bartlett, "Bioelectrochemistry: Fundamentals, Experimental Techniques and Applications" John Wiley & Sons, Ltd., Chichester (2008).
  3. R. S. Nicholson and I. Shain, 'Theory of stationary electrode polarography single scan and cyclic methods applied to reversible irreversible and kinetic system' Anal. Chem., 36, 706 (1964). https://doi.org/10.1021/ac60210a007
  4. B. Speiser, 'From cyclic voltammetry to scanning electrochemical microscopy: Modern electroanalytical methods to study organic compounds, materials, and reactions' Curr. Org. Chem, 3, 171 (1999).
  5. R. S. Nicholson, 'Theory and application of cyclic voltammetry for measurement of electrode reaction kinetics' Anal. Chem., 37, 1351 (1965). https://doi.org/10.1021/ac60230a016
  6. D. K. Gosser and F. Zhang, 'A PC-based general program for the simulation and analysis of cyclic voltammetric experiments' Talanta, 38, 715 (1991). https://doi.org/10.1016/0039-9140(91)80191-2
  7. H. N. Cho, T. Y. Kim and D. Y. Yoon, 'A study on the computational simulation of cyclic voltammetry using semi-infinite diffusion model' J. KES, 14, 138 (2011).
  8. D. S. Polcyn and I. Shain, 'Multistep charge transfers in stationary electrode polarography' Anal. Chem., 38, 370 (1966). https://doi.org/10.1021/ac60235a002
  9. M. D. Levi and D. Aurbach, 'The mechanism of lithium intercalation in graphite film electrodes in aprotic media: Part 1. High resolution slow scan rate cyclic voltammetric studies and modeling' J. Electroanal. Chem., 421, 79 (1997). https://doi.org/10.1016/S0022-0728(96)04832-2
  10. M. G. Hill and K. R. Mann, 'The effect of axial coordination and ligand strain on the multielectrontransfer chemistry of d8d8 rhodium isocyanide complexes: UV-vis-IR spectroelectrochemical studies' Inorganica Chimica Acta, 243, 219 (1996). https://doi.org/10.1016/0020-1693(95)04911-8
  11. P. Sanecki and P. Skital, 'The cyclic voltammetry simulation of a competition between stepwise and concerted dissociative electron transfer, the modeling of alpha apparent variability, the relationship between apparent and elementary kinetic parameters' Computers and Chemistry, 26, 297 (2002). https://doi.org/10.1016/S0097-8485(01)00123-1
  12. A. J. Bard and L. R. Faulkner, "Electrochemical Methods: Fundamentals and Applications, 2nd Ed." John Wiley & Sons, Inc., New York (2001).
  13. A. Molina, C. Serna, Q. Li, E. Laborda, C. Batchelor- McAuley, and R. G. Compton, 'Analytical solutions for the study of multielectron transfer processes by staircase, cyclic, and differential voltammetries at disc microelectrodes' J. Phys. Chem. C, 116, 11470 (2012). https://doi.org/10.1021/jp302075t
  14. D. T. Pierce and W. E. Geiger, 'Splitting of a twoelectron cyclic voltammetric wave into its one-electron components: The $(-C_{6}Me_{6})_{2}Ru^{2+}/^{+}/^{0})$ couples' J. Am. Chem. Soc., 111, 7636 (1989). https://doi.org/10.1021/ja00201a067
  15. R. J. Klingler and J. K. Kochi, 'Electron-transfer kinetics from cyclic voltammetry.: Quantitative description of electrochemical reversibility' J. Phys. Chem., 85, 1731 (1981). https://doi.org/10.1021/j150612a028

Cited by

  1. Consideration on the Non-linearity of Warburg Impedance for Fourier Transform Electrochemical Impedance Spectroscopy vol.17, pp.2, 2014, https://doi.org/10.5229/JKES.2014.17.2.119