• Title/Summary/Keyword: reaction-diffusion

Search Result 970, Processing Time 0.028 seconds

Chloride Penetration Properties of Portland Cement Mortar Substituted with Anion Exchange Resin Powder (음이온교환수지 분말이 치환된 포틀랜드 시멘트 모르타르의 염소이온 침투 특성)

  • Lee, Yun-Su;Lim, Seung-Min;Park, Jang-Hyun;Jung, Do-Hyun;Lee, Han-Seung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.20 no.1
    • /
    • pp.1-9
    • /
    • 2020
  • Chloride ion, which penetrates into the cement composites from the outside, generally diffuses by the concentration gradient. Chloride ions are adsorbed by the chemical reaction with cement hydrates. Recent studies have shown that anion exchange resin (AER) powder can effectively adsorb the chloride ion in the cement composites, and thus, the cement composites containing AER have a high chloride adsorption capacity and a good resistance for chloride penetration. In this study, the chloride adsorption ability of the AER powder was investigated under the conditions of distilled water and calcium hydroxide saturated solution to determine if the AER powder is less effective to increase the chloride adsorption ability after grinding process. The chloride adsorption ability of AER powder was compared with the previous research about the chloride adsorption of AER bead. In addition, the compressive strength, chloride diffusion coefficient (using NT Build 492 method), and the chloride profile of cement mortar substituted with AER powder were investigated. There was no decrease in the chloride adsorption capacity of AER powder but increase in the kinetic property for chloride adsorption after the grinding process. The AER powder could absorb the chloride ion in the mortar quickly, and showed better chloride ion adsorption ability than the cement hydrates.

Effects of DC Biases and Post-CMP Cleaning Solution Concentrations on the Cu Film Corrosion

  • Lee, Yong-K.;Lee, Kang-Soo
    • Corrosion Science and Technology
    • /
    • v.9 no.6
    • /
    • pp.276-280
    • /
    • 2010
  • Copper(Cu) as an interconnecting metal layer can replace aluminum (Al) in IC fabrication since Cu has low electrical resistivity, showing high immunity to electromigration compared to Al. However, it is very difficult for copper to be patterned by the dry etching processes. The chemical mechanical polishing (CMP) process has been introduced and widely used as the mainstream patterning technique for Cu in the fabrication of deep submicron integrated circuits in light of its capability to reduce surface roughness. But this process leaves a large amount of residues on the wafer surface, which must be removed by the post-CMP cleaning processes. Copper corrosion is one of the critical issues for the copper metallization process. Thus, in order to understand the copper corrosion problems in post-CMP cleaning solutions and study the effects of DC biases and post-CMP cleaning solution concentrations on the Cu film, a constant voltage was supplied at various concentrations, and then the output currents were measured and recorded with time. Most of the cases, the current was steadily decreased (i.e. resistance was increased by the oxidation). In the lowest concentration case only, the current was steadily increased with the scarce fluctuations. The higher the constant supplied DC voltage values, the higher the initial output current and the saturated current values. However the time to be taken for it to be saturated was almost the same for all the DC supplied voltage values. It was indicated that the oxide formation was not dependent on the supplied voltage values and 1 V was more than enough to form the oxide. With applied voltages lower than 3 V combined with any concentration, the perforation through the oxide film rarely took place due to the insufficient driving force (voltage) and the copper oxidation ceased. However, with the voltage higher than 3 V, the copper ions were started to diffuse out through the oxide film and thus made pores to be formed on the oxide surface, causing the current to increase and a part of the exposed copper film inside the pores gets back to be oxidized and the rest of it was remained without any further oxidation, causing the current back to decrease a little bit. With increasing the applied DC bias value, the shorter time to be taken for copper ions to be diffused out through the copper oxide film. From the discussions above, it could be concluded that the oxide film was formed and grown by the copper ion diffusion first and then the reaction with any oxidant in the post-CMP cleaning solution.

A Study on the Comparison of Brazed Joint of Zircaloy-4 with PVD-Be and Zr-Be Amorphous alloys as Filler Metals (PVD-Be와 비정질 Zr-Be 합금을 용가재로 사용한 Zircaloy-4의 브레이징 접합부의 비교 연구)

  • Hwang, Yong-Hwa;Kim, Jae-Yong;Lee, Hyung-Kwon;Koh, Jin-Hyun;Oh, Se-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.2
    • /
    • pp.113-119
    • /
    • 2006
  • Brazing is an important manufacturing process in the fabrication of Heavy Water Reactor fuel rods, in which bearing and spacer pads are joined to Zircaloy-4 cladding tubes. The physical vapor deposition(PVD) technique is currently used to deposit metallic Be on the surfaces of pads as a filler metal. Amorphous Zr-Be binary alloys which are manufactured by rapid solidification process are under developing to substitute the conventional PVD-Be coating. In the present study, brazed joint with PVD and amorphous alloys of $Zr_{1-x}Be_{x}(0.3{\le}x{\le}0.5)$ as filler metals are compared by mechanism, microstructure and hardness. The thickness of brazed joint with amorphous alloys became much smaller than that of PVD-Be. The erosion of base metal did not occur in the brazed joint with amorphous alloys. The brazing mechanism for PVD-Be seems to be Be diffusion into Zr-4 with capillary action resulting from eutectic reaction while that for amorphous alloys are associated with the liquid phase formation in the brazed joint. The brazed joint microstructure with PVD-Be consists of dendrite while that with amorphous alloys is globular. The $Zr_{0.7}Be_{0.3}$ alloy shows the smooth interface with little erosion in the base metal and is recommended a most suitable brazing filler metal for Zircaloy-4.

  • PDF

Some Properties of an Isolate of Peanut stunt virus Isolated from White Clover (Trifolium repens L.) (토끼풀에서 분리한 Peanut stunt virus의 성질)

  • Jung, Goo-Ho;Jeon, Yong-Woon;Choi, Jang-Kyung;Hong, Jin-Sung;Ryu, Ki-Hyun;Lee, Sang-Yong
    • Research in Plant Disease
    • /
    • v.14 no.1
    • /
    • pp.71-75
    • /
    • 2008
  • An isolate of Peanut stunt virus (PSV), named as Tr-PSV, was isolated from white clover (Trifolium repens L) showing mosaic symptom. Tr-PSV systemically infected all plants tested in the Nicotiana spp. and induced local lesions on inoculated leaves of Chenopodium amaranticolor. However, Tr-PSV induced typical mosaic symptoms as ER-PSV on Vigna unguiculata 5 to 6 days after inoculation, while Fny-CMV used as a control virus of Cucumovirus produced local lesions on inoculated leaves. In dsRNA analysis, Tr-PSV consisted of four dsRNAs, but satellite RNA was not detected. The cDNA of coat protein gene of Tr-PSV was amplified by RT-PCR using a Cucumovirus-specific single pair primers that designed to amplify a DNA fragment of approximately 950 bp. By restriction mapping analysis using RFLP of the RT-PCR products and by serological properties of gel diffusion test, Tr-PSV belongs to a typical member of PSV subgroup I. This is the first report on the occurrence of PSV in white clover in Korea.

Characteristics of Coagulase-negative Staphylococci Isolates from Dental Clinic Environments in Busan, Korea (부산지역 치과환경에서 분리된 coagulase-negative staphylococci의 특성)

  • Jung, Hye-In;Jung, So Young;Park, Indal;Bae, Il Kwon
    • Journal of Life Science
    • /
    • v.26 no.2
    • /
    • pp.220-225
    • /
    • 2016
  • Coagulase-negative staphylococci (CNS) have recently become the bacteria most frequently found in clinical infections. The aim of this study was to investigate the prevalence, antimicrobial susceptibilities, and molecular characteristics of CNS isolates from dental clinic environments in Busan, Korea. One hundred and fifty-four samples were collected from 10 dental clinics and dental hospitals in Busan from December 2014 to January 2015. Species were identified by matrix-assisted laser desorption/ionization–time-of-flight. Antimicrobial susceptibility was determined by disk diffusion methods. A polymerase chain reaction was performed to detect mecA, mupA gene, and SCCmec types. Of the 154 samples, 10(6.5%) isolates were identified as CNS (5 Staphylococcus epidermidis, 2 Staphylococcus capitis, 2 Staphylococcus, and 1 Staphylococcus haemolyticus). Among the 10 isolates, 6 were resistant to penicillin, 5 were resistant to gentamicin, 3 were resistant to tetracycline, and 2 were resistant to cefoxitin and erythromycin. However, clindamycin, ciprofloxacin, teicoplanin, and trimethoprim-sulfamethoxazole resistant isolates were not present. Genes encoding mecA were detected in 4 (2 S. warneri and 2 S. haemolyticus) isolates, and mupA in 1 (S. epidermidis) isolate. One methicillin-resistant CNS (S. warneri) isolate was determined as being of the SCCmec type I. It is concluded that CNS resistant to various antimicrobial agents was widely distributed in dental clinic environments in Korea.

Catalytic Hydrogenation of Triglyceride in a Semi-batch Reactor (Semi-batch 반응기에서의 트리글리세라이드 접촉 수소화 반응)

  • An, Jae-Yong;Lee, Choul-Ho;Jeon, Jong-Ki
    • Clean Technology
    • /
    • v.25 no.2
    • /
    • pp.101-106
    • /
    • 2019
  • The aim of this study is to investigate the feasibility of an Ni-SA catalyst, which was prepared from nickel, kieselguhr, and alumina, for the hydrogenation of triglyceride in a bench-scale reactor. Ni-SA powders were prepared by precipitating nickel precursors on a silica and alumina support. The powder was reduced in a hydrogen flow, mixed with a saturated palm oil, and then cooled to prepare an Ni-SA catalyst tablet. The sizes of NiO crystals of a commercial Pricat catalyst and the Ni-SA catalyst prepared in this study were $35{\AA}$ and $38{\AA}$, respectively. The pore volume and pore size of the Ni-SA catalyst was much larger than the pore volume and pore size of the Pricat catalyst. In addition, the average particle size of the Ni-SA catalyst was much smaller than that of the Pricat catalyst. The triglyceride hydrogenation reaction was carried out in a semi-batch reactor using catalysts impregnated with oil and molded into tablets. It was found that the Ni-SA catalyst was superior to the commercial Pricat catalyst in triglyceride hydrogenation, which could be ascribed to the raw material and the products being less influenced by the diffusion resistance in the pores of the Ni-SA catalyst. The Ni-SA catalyst prepared in this study has the potential to replace the Pricat catalyst as a catalyst for use in the commercial process for hydrogenation of triglyceride.

Anti-microbial Activity Effects of Ozonized Olive Oil Against Bacteria and Candida albicans (오존화 올리브 오일의 세균과 Candida alicans에 대한 항미생물 활성 효과)

  • Chung, Kyung Tae;Kim, Byoung Woo
    • Journal of Life Science
    • /
    • v.29 no.2
    • /
    • pp.223-230
    • /
    • 2019
  • Ozone is a gaseous molecule able to kill microorganisms, such as yeast, fungi, bacteria, and protozoa. However, ozone gas is unstable and cannot be used easily. In order to utilize ozone properly and efficiently, plant oil can be employed. Ozone reacts with C-C double bonds of fatty acids, converting to ozonized oil. In this reaction, ozonide is produced within fatty acids and the resulting ozonized oil has various biological functions. In this study, we showed that ozonized oil has antimicrobial activity against fungi and bacteria. To test the antimicrobial activity of ozonized oil, we produced ozonized olive oil. Ozonized olive oil was applied to Staphylococcus aureus, methicillin-resistant Staphylococcus aureus (MRSA), Staphylococcus epidermidis, Pseudomonas aeruginosa, Escherichia coli, and Candida albicans. Antimicrobial activity was assayed using the disk diffusion method following the National Committee for Clinical Laboratory Standards. Minimal inhibitory concentrations (MIC) were 0.25 mg for S. aureus, 0.5 mg for S. epidermidis, 3.0 mg for P. aeruginosa, and 1.0 mg for E. coli. Gram positive bacteria were more susceptible than Gram negative bacteria. We compared growth inhibition zones against S. aureus and MRSA, showing that the ozonized olive oil was more effective on MRSA than S. aureus. Furthermore, the ozonized olive oil killed C. albicans within an hour. These data suggested that ozonized olive oil could be an alternative drug for MRSA infection and could be utilized as a potent antimicrobial and antifungal substance.

Anti-Oral Microbial Activity and Anti-Inflammatory Effects of Rosmarinic Acid in Lipopolysaccharide-Stimulated MC3T3-E1 Osteoblastic Cells on a Titanium Surface

  • Jeong, Moon-Jin;Lim, Do-Seon;Heo, Kyungwon;Jeong, Soon-Jeong
    • Journal of dental hygiene science
    • /
    • v.20 no.4
    • /
    • pp.221-229
    • /
    • 2020
  • Background: The purpose of this study was to investigate the anti-oral microbial activity and anti-inflammatory effects of rosmarinic acid (RA) in lipopolysaccharide (LPS)-stimulated MC3T3-E1 osteoblastic cells on a titanium (Ti) surface during osseointegration, and to confirm the possibility of using RA as a safe natural substance for the control of peri-implantitis (PI) in Ti-based dental implants. Methods: A disk diffusion test was conducted to confirm the antimicrobial activity of RA against oral microorganisms. In order to confirm the anti-inflammatory effects of RA, inflammatory conditions were induced with 100 ng/ml of LPS in MC3T3-E1 osteoblastic cells on the Ti surface treated with or without 14 ㎍/ml of RA. The production of nitric oxide (NO) and prostaglandin E2 (PGE2) in LPS-stimulated MC3T3-E1 osteoblastic cells on the Ti surface was confirmed using an NO assay kit and PGE2 enzyme-linked immunosorbent assay kit. Reverse transcription polymerase chain reaction and western blot analysis were performed to confirm the expression of interleukin (IL)-1β and tumor necrosis factor (TNF)-α in total RNA and protein. Results: RA showed weak antimicrobial effects against Streptococcus mutans and Escherichia coli, but no antimicrobial activity against the bacteria Aggregatibacter actinomycetemcomitans and the fungus Candida albicans. RA reduced the production of pro-inflammatory mediators, NO and PGE2, and proinflammatory cytokines, TNF-α and IL-1β, in LPS-stimulated MC3T3-E1 osteoblastic cells on the Ti surface at the protein and mRNA levels. Conclusion: RA not only has anti-oral microbial activity, but also anti-inflammatory effects in LPS-stimulated MC3T3-E1 osteoblasts on the Ti surface, therefore, it can be used as a safe functional substance derived from plants for the prevention and control of PI for successful Ti-based implants.

Selective Catalytic Reduction (SCR) of NOx with NH3 on Sb-promoted VWTi Catalysts (Sb 첨가에 따른 VWTi 촉매의 암모니아 선택적 촉매 환원(SCR)을 통한 질소산화물 저감)

  • Kim, Su Bin;Choi, Gyeong Ryun;Shin, Jung Hun;Hong, Sung Chang
    • Applied Chemistry for Engineering
    • /
    • v.32 no.1
    • /
    • pp.35-41
    • /
    • 2021
  • VWTi, which is used as a commercial catalyst in NH3-SCR, exhibits excellent denitrification performance at 300 to 400 ℃, but there is a problem that efficiency decreases at low temperatures below 300 ℃. Research on catalysts containing promoter to increase low-temperature denitrification efficiency is steadily progressing. However, research on the cause of the improvement in low-temperature denitrification efficiency of the catalyst and the catalyst properties is insufficient. In this study, it was confirmed that by adding Sb to VWTi, denitrification performance was improved by more than 10% in NH3-SCR reaction below 300 ℃. At this time, the space velocity and the size of the catalyst particles were controlled to exclude the influence of external/internal diffusion. In addition, the catalytic properties according to the presence or absence of Sb were investigated by performing BET, TEM/EDS, O2-TPD, H2-TPR and DRIFTs analysis. It was judged that the addition of Sb increased the adsorbed oxygen species on the surface of the catalyst, thereby enhancing the redox properties of the catalyst at low temperature and exhibiting excellent denitrification performance.

A Study on Rust Cleaning of Various Industrial Equipment Using Cosmetic and Food Materials (화장품과 식품 재료를 이용한 각종 산업장비 녹(rust) 세정에 관한 연구)

  • Yeom, Seok-Jae;Jung, Sundo;Oh, Eunha
    • Journal of the Korean Applied Science and Technology
    • /
    • v.38 no.1
    • /
    • pp.19-28
    • /
    • 2021
  • Corrosion is the degradation of metals by reaction with the environment. It is difficult to completely remove. Corrosion proceeds rapidly after the protective barrier is destroyed, and several reactions occur that alter the composition and properties of the metal surface and local environments, such as diffusion of metal cations into the matrix, the formation of oxides, and local pH changes. The study of corrosion of steel and iron is of theoretical and practical interest and is receiving considerable attention. Acid solutions, which are widely used in industrial pickling, acid descaling, cleaning and acidification of oil wells, require the use of corrosion inhibitors to suppress corrosion attacks on metallic materials. Physical removal of rust requires expensive special equipment, and chemical removal of it can cause corrosion or shorten the life of the metal. In this study, an eco-friendly rust cleaner was developed using cosmetics and food materials by applying the concept of perm reducing agent and chelate, and applied to remove rust from industrial and hot water pipes and various industrial devices. As a result, it was found that rust cleaners remove rust more effectively and safely compared to conventional treatment methods. At the same time, the rust removal efficiency was 1.75 to 2.5 times better for industrial piping and 1.56 to 2.2 times better for boiler hot water than conventional methods.