References
- G. Qi and R. T. Yang, Performance and kinetics study for low-temperature SCR of NO with NH3 over MnOx-CeO2 catalyst, J. Catal., 217(2), 434-441 (2003). https://doi.org/10.1016/S0021-9517(03)00081-2
- P. S. Metkar, M. P. Harold, and V. Balakotaiah, Selective catalytic reduction of NOx on combined Fe- and Cu-zeolite monolithic catalysts: Sequential and dual layer configurations, Appl. Catal. B: Environ., 111-112, 67-80 (2012). https://doi.org/10.1016/j.apcatb.2011.09.019
- Y. Wu, B. Gu, J. W. Erisman, S. Reis, Y. Fang, X. Lu, and X. Zhang, PM2.5 pollution is substantially affected by ammonia emissions in China, Environ. Pollut., 218, 86-94 (2016). https://doi.org/10.1016/j.envpol.2016.08.027
- P. Forzatti, Present status and perspectives in de-NOx SCR catalysis, Appl. Catal. A: Gen., 222, 221-236 (2001). https://doi.org/10.1016/S0926-860X(01)00832-8
- Y. Ganjkhanlou, T. V. W. Janssens, P. N. R. Vennestrom, L. Mino, M. C. Paganini, M. Signorile, S. Bordiga, and G. Berlier, Location and activity of VOx species on TiO2 particles for NH3-SCR catalysis, Appl. Catal. B: Environ., 278, 119337 (2020). https://doi.org/10.1016/j.apcatb.2020.119337
- Y. Yang, M. Wang, Z. Tao, Q. Liu, Z. Fei, X. Chen, Z. Zhang, J. Tang, M. Cui, and X. Qiao, Mesoporous Mn-Ti amorphous oxides: A robust low-temperature NH3-SCR catalyst, Catal. Sci. Technol., 8, 6396-6406 (2018). https://doi.org/10.1039/C8CY01313F
- Y. Shan, J. Du, Y. Yu, W. Shan, X. Shi, and H. He, Precise control of post-treatment significantly increases hydrothermal stability of in-situ synthesized cu-zeolites for NH3-SCR reaction, Appl. Catal. B: Enviorn., 266, 118655 (2020). https://doi.org/10.1016/j.apcatb.2020.118655
- D. W. Kwon, K. H. Park, and S. C. Hong, The influence on SCR activity of the atomic structure of V2O5/TiO2 catalysts prepared by a mechanochemical method, Appl. Catal. A: Gen., 451, 227-235 (2013). https://doi.org/10.1016/j.apcata.2012.09.050
- L. J. Alemany, L. Lietti, N. Ferlazzo, P. Forzatti, G. Busca, E. Giamello, and F. Bregani, Reactivity and physicochemical characterization of V2O5-WO3/TiO2 De-NOx catalysts, J. Catal., 155, 117-130 (1995). https://doi.org/10.1006/jcat.1995.1193
- X. Liu, Z. Zhao, R. Ning, Y. Qin, T. Zhu, and F. Liu, Ce-Doped V2O5-WO3/TiO2 with low vanadium loadings as SCR catalysts and the resistance of H2O and SO2, Catal. Lett., 150, 375-383 (2020). https://doi.org/10.1007/s10562-019-03077-y
- L. Zhu, Z. Zhong, J. Xue, Y. Xu, C. Wang, and L. Wang, NH3-SCR performance and the resistance to SO2 for Nb doped vanadium based catalyst at low temperatures, J. Environ. Sci., 65, 306-316 (2018). https://doi.org/10.1016/j.jes.2017.06.033
- T. Yan, S. Wang, G. Xu, M. Wu, J. Chen, and J. Li, Promoter rather than inhibitor: Phosphorus incorporation accelerates the activity of V2O5-WO3/TiO2 catalyst for selective catalytic reduction of NOx by NH3, ACS Catal., 10(4), 2747-2753 (2020). https://doi.org/10.1021/acscatal.9b05549
- D. W. Kwon, D. H. Kim, and S. C. Hong, Promotional effect of antimony on the selective catalytic reduction NO with NH3 over V-Sb/Ti catalyst, Environ. Technol., 40, 2577-2587 (2019). https://doi.org/10.1080/09593330.2018.1491632
- D. H. Kim, D. W. Kwon, and S. C. Hong, Structural characteristics of V-based catalyst with Sb on selective catalytic NOx reduction with NH3, Appl. Surf. Sci., 538, 148088 (2021). https://doi.org/10.1016/j.apsusc.2020.148088
- C. Xu, J. Liu, Z. Zhao, F. Yu, K. Cheng, Y. Wei, A. Duan, and G. Jiang, NH3-SCR denitration catalyst performance over vanadium-titanium with the addition of Ce and Sb, J. Environ. Sci., 31, 74-80 (2015). https://doi.org/10.1016/j.jes.2014.09.040
- J. A. Dumesic, N. Y. Topsoe, H. Topsoe, Y. Chen, and T. Slabiak, Kinetics of selective catalytic reduction of nitric oxide by ammonia over vanadia/titania, J. Catal., 163, 409-417 (1996). https://doi.org/10.1006/jcat.1996.0342
- K. J. Lee, P. A. Kumar, M. S. Maqbool, K. N. Rao, K. H. Song, and H. P. Ha, Ceria added Sb-V2O5/TiO2 catalysts for low temperature NH3 SCR: Physico-chemical properties and catalytic activity, Appl. Catal. B: Environ., 142-143, 705-717 (2013). https://doi.org/10.1016/j.apcatb.2013.05.071
- Z. Huang, Y. Du, J. Zhang, X. Wu, H. Shen, and G. Jing, Exceptional activity over submonolayer MoO3 motif on TiO2 for nitrogen oxide emission abatement, Environ. Sci. Technol., 53, 5309-5318 (2019). https://doi.org/10.1021/acs.est.9b00665
- K. B. Nam, J. H. Yeo, and S. C. Hong, Study of the phosphorus deactivation effect and resistance of vanadium-based catalysts, Ind. Eng. Chem. Res., 58, 18930-18941 (2019). https://doi.org/10.1021/acs.iecr.9b01404
- J. S. Kim, D. H. Kim, and H. P. Ha, Investigating multi-functional traits of metal-substituted vanadate catalysts in expediting NOx reduction and poison degradation at low temperatures, J. Hazard. Mater., 397, 122671 (2020). https://doi.org/10.1016/j.jhazmat.2020.122671