DOI QR코드

DOI QR Code

Anti-microbial Activity Effects of Ozonized Olive Oil Against Bacteria and Candida albicans

오존화 올리브 오일의 세균과 Candida alicans에 대한 항미생물 활성 효과

  • 정경태 (동의대학교 임상병리학과) ;
  • 김병우 (동의대학교 블루바이오 소재개발 및 실용화 지원 센터)
  • Received : 2018.12.10
  • Accepted : 2019.02.07
  • Published : 2019.02.28

Abstract

Ozone is a gaseous molecule able to kill microorganisms, such as yeast, fungi, bacteria, and protozoa. However, ozone gas is unstable and cannot be used easily. In order to utilize ozone properly and efficiently, plant oil can be employed. Ozone reacts with C-C double bonds of fatty acids, converting to ozonized oil. In this reaction, ozonide is produced within fatty acids and the resulting ozonized oil has various biological functions. In this study, we showed that ozonized oil has antimicrobial activity against fungi and bacteria. To test the antimicrobial activity of ozonized oil, we produced ozonized olive oil. Ozonized olive oil was applied to Staphylococcus aureus, methicillin-resistant Staphylococcus aureus (MRSA), Staphylococcus epidermidis, Pseudomonas aeruginosa, Escherichia coli, and Candida albicans. Antimicrobial activity was assayed using the disk diffusion method following the National Committee for Clinical Laboratory Standards. Minimal inhibitory concentrations (MIC) were 0.25 mg for S. aureus, 0.5 mg for S. epidermidis, 3.0 mg for P. aeruginosa, and 1.0 mg for E. coli. Gram positive bacteria were more susceptible than Gram negative bacteria. We compared growth inhibition zones against S. aureus and MRSA, showing that the ozonized olive oil was more effective on MRSA than S. aureus. Furthermore, the ozonized olive oil killed C. albicans within an hour. These data suggested that ozonized olive oil could be an alternative drug for MRSA infection and could be utilized as a potent antimicrobial and antifungal substance.

오존은 박테리아, 원생동물, 효모 및 진균과 같은 미생물을 사멸시킬 수 있는 기체 분자이다. 그러나 오존 가스는 대기 중에서 불안정하기 때문에 쉽게 사용할 수 없다. 최근에 오존을 쉽고 효율적으로 사용할 수 있도록 식물성 오일을 활용하는 방법이 개발되었고, 활용성에 대한 연구가 진행되고 있다. 오존은 지방산의 C-C 이중 결합과 반응하여 오존화된 오일로 전환 될 수 있다. 이 반응에서 오존 처리된 오일의 지방산 내에서 오각형 고리 구조화합물인 오조나이드가 생성된다. 이 연구에서는 올리브 오일을 사용하여 오존 처리된 오일이 4 종류의 세균과 곰팡이에 대해 중요한 항미생물 활성을 갖는다는 가설을 연구하였다. 오존화 올리브 오일을 4 가지 피부 감염미생물 Staphylococcus aureus (ATCC 25922), Staphylococcus epidermidis (ATCC 12228), Pseudomonas aeruginosa (ATCC 27853), Candida albicans (ATCC 10231) 및 장내 세균인 Escherichia coli에 처리하였다. 항미생물 활성은 미국 국립 임상 실험 표준위원회 방법(National Clinical Laboratory Standards, USA)에 따른 disk 확산 방법을 사용하여 분석하였다. 최소억제농도(MIC)는 S. aureus에 대해 0.25 mg, S. epidermidis에 대해 0.5 mg, P. aeruginosa에 대해 3.0 mg 및 E. coli에 대해 1.0 mg로 나타나 오존화 올리브 오일은 그람음성균보다 그람양성균에 더 효과적이었다. 또한, S. aureus와 MRSA에 대한 항균활성을 비교하였을 때 MRSA에서 오존화된 올리브 오일이 S. aureus보다 더 민감하게 작용하였으며, 진균인 C. albicans는 한 시간 이내에 사멸되었다. 따라서 본 연구의 결과는 오존화 올리브 오일이 강력한 항미생물 물질로 사용될 수 있는 가능성을 제시하였다.

Keywords

SMGHBM_2019_v29n2_223_f0001.png 이미지

Fig. 1. Production of ozonide. Ozone oxidizes fatty acids at double bond linkage producing a five ring compound, ozonide.

SMGHBM_2019_v29n2_223_f0002.png 이미지

Fig. 2. The antibacterial activity of ozonized olive oil against 4 tested bacteria strains.

SMGHBM_2019_v29n2_223_f0003.png 이미지

Fig. 3. The antibacterial activity of two positive control antibiotics against 4 tested bacteria strains.

SMGHBM_2019_v29n2_223_f0005.png 이미지

Fig. 5. Mortality by methylene blue assay.

SMGHBM_2019_v29n2_223_f0006.png 이미지

Fig. 4. Comparison of the antibacterial activity of ozonized olive oil against S. aureus and MRSA.

Table 2. Comparison of Inhibition zones against the tested microorganisms at the amount of 12 mg ozonized olive oil

SMGHBM_2019_v29n2_223_t0001.png 이미지

Table 1. Minimum inhibitory concentrations (MICs) of ozonized olive oil for each organism

SMGHBM_2019_v29n2_223_t0002.png 이미지

References

  1. Ahmadi, K., Hashemian, A. M., Bolvardi, E. and Hosseini, P. K. 2016. Vancomycin-resistant Pseudomonas aeroginosa in the cases of trauma. Med. Arch. 70, 57-60. https://doi.org/10.5455/medarh.2016.70.57-60
  2. Becher, D., Hempel, K., Sievers, S., Zuhlke, D., Pane-Farre, J., Otto, A., Fuchs, S., Albrecht, D., Bernhardt, J., Engelmann, S., Volker, U., van Dijl, J. M. and Hecker, M. 2009. A proteomic view of an important human pathogen-towards the quantification of the entire Staphylococcus aureus proteome. PLoS One 4, e8176. https://doi.org/10.1371/journal.pone.0008176
  3. Bocci, V. A. 2006. Scientific and medical aspects of ozone therapy. State of the art. Arch. Med. Res. 37, 425-435. https://doi.org/10.1016/j.arcmed.2005.08.006
  4. Clinical and Laboratory Standards Institutes (CLSI). 2015. Performance Standards for Antimicrobial Disk Susceptibility Test; Twelfth Edition. CLSI document M02-A12. Clinical and Laboratory Standards Institutes: Wayne, Pennsylvania, USA.
  5. Gibson, J., Sood, A. and Hogan, D. A. 2009. Pseudomonas aeruginosa-Candida albicans interactions: Localization and fungal toxicity of a phenazine derivative. Appl. Environ. Microbiol. 75, 504-513. https://doi.org/10.1128/AEM.01037-08
  6. Hecker, M., Mäder, U. and Volker, U. 2018. From the genome sequence via the proteome to cell physiology - Pathoproteomics and pathophysiology of Staphylococcus aureus. Int. J. Med. Microbiol. 308, 545-557. https://doi.org/10.1016/j.ijmm.2018.01.002
  7. Kim, H. B. 2007. Community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA). Kor. J. Internal Med. 27, 120-130.
  8. Kockerling, E., Karrasch, L., Schweitzer, A., Razum, O. and Krause, G. 2017. Public health research resulting from one of the world's largest outbreaks caused by entero- hemorrhagic Escherichia coli in Germany 2011: A Review. Front. Public Health 5, 332. https://doi.org/10.3389/fpubh.2017.00332
  9. Kuhbacher, A., Burger-Kentischer, A. and Rupp, S. 2017. Interaction of Candida species with the skin. Microorganisms 5, pii: E32.
  10. Kumar, T., Arora, N., Purim, G., Aravinda, K., Dixit, A. and Jatti, D. 2016. Efficacy of ozonized olive oil in the management of oral lesions and conditions: A clinical trial. Contemp. Clin. Dent. 7, 51-54. https://doi.org/10.4103/0976-237X.177097
  11. Lister, P. D., Wolter, D. J. and Hanson, N. D. 2009. Antibacterial-resistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clin. Microbiol. Rev. 22, 582-610. https://doi.org/10.1128/CMR.00040-09
  12. Miragaiam, M. 2018. Factors contributing to the evolution of mecA-mediated ${\beta}$-lactam resistance in Staphylococci: update and new insights from whole genome sequencing (WGS). Front. Microbiol. 9, 2723. https://doi.org/10.3389/fmicb.2018.02723
  13. Martinelli, M., Giovannangeli, F., Rotunno, S., Trombetta, C. M. and Montomoli, E. 2017. Water and air ozone treatment as an alternative sanitizing technology. J. Prev. Med. Hyg. 58, E48-E52.
  14. Mayer, F. L. Duncan, W. and Hube, B. 2013. Candida albicans pathogenicity mechanisms. Virulence 4, 119-128. https://doi.org/10.4161/viru.22913
  15. Montevecchi, M., Dorigo, A., Cricca, M. and Checchi, L. 2013. Comparison of the antibacterial activity of an ozonated oil with chlorhexidine digluconate and povidone-iodine. A disk diffusion test. New Microbiol. 36, 289-302.
  16. Nemeth, J. Oesch, G. and Kuster, S. P. 2015. Bacteriostatic versus bactericidal antibiotics for patients with serious bacterial infections: systematic review and meta-analysis. J. Antimicrob. Chemo. 70, 382-395. https://doi.org/10.1093/jac/dku379
  17. Nguyen, T. H., Park, M. D. and Otto, M. 2017. Host response to Staphylococcus epidermidis colonization and infections. Front. Cell. Infect. Microbiol. 7, 90.
  18. Ngwenya, N., Ncube, E. J. and Parsons, J. 2013. Recent advances in drinking water disinfection: successes and challenges. Rev. Environ. Contam. Toxicol. 222, 111-170.
  19. Pommerville, J. 2016. Alcamo's Microbes and Society, pp. 238-249. 4th ed., Jones & Bartlett Learning: Burlington, MA, USA.
  20. Rosenblum, J., Ge, C., Bohrerova, Z., Yousef, A. and Lee, J. 2012. Ozonation as a clean technology for fresh produce industry and environment: sanitizer efficiency and wastewater quality. J. Appl. Microbiol. 113, 837-845. https://doi.org/10.1111/j.1365-2672.2012.05393.x
  21. Russo, A., Concia, E., Cristini, F., De Rosa, F. G., Esposito, S., Menichetti, F., Petrosillo, N., Tumbarello, M., Venditti, M., Viale, P., Viscoli, C. and Bassetti, M. 2016. Current and future trends in antibiotic therapy of acute bacterial skin and skin-structure infections. Clin. Microbiol. Infect. 22, S27-36. https://doi.org/10.1016/S1198-743X(16)30095-7
  22. Sachdeva, S. Raghuvamsi, V., Palur, K., Sudhakar, U. and Thenmalarchelvi, R. 2017. E. coli Group 1 capsular polysaccharide exportation nanomachinary as a plausible antivirulence target in the perspective of emerging antimicrobial resistance. Front. Microbiol. 8, 70.
  23. Saldi, S. 2014. Image-based cytometric analysis of fluorescent viability and vitality staining methods for ale and lager fermentation yeast. J. Am. Soc. Brew. Chem. 72, 253-260.
  24. Sawant, B. and Khan, T. 2017. Recent advances in delivery of antifungal agents for therapeutic management of candidiasis. Biomed. Pharmacother. 96, 1478-1490. https://doi.org/10.1016/j.biopha.2017.11.127
  25. Sechi, L. A., Lezcano, I., Nunez, N., Espim, M., Dupre, I., Pinna, A., Molicotti, P., Fadda, G. and Zanetti, S. 2001. Antibacterial activity of ozonized sunflower oil (Oleozon). J. Appl. Microbiol. 90, 279-284. https://doi.org/10.1046/j.1365-2672.2001.01235.x
  26. Smith, N. L., Wilson, A. L., Gandhi, J., Vatsia, S. and Khan, S. A. 2017. Ozone therapy: an overview of pharmacodynamics, current research, and clinical utility. Med. Gas. Res. 7, 212-219. https://doi.org/10.4103/2045-9912.215752
  27. Song, J. H. and Joo, E. J. 2010. The crisis of antimicrobial resistance: Current status and future strategies. J. Kor. Med. Assoc. 53, 999-1005. https://doi.org/10.5124/jkma.2010.53.11.999
  28. Terlizzi, M. E., Gribaudo, G. and Maffei, M. E. 2017. UroPa-thogenic Escherichia coli (UPEC) Infections: virulence factors, bladder responses, antibiotic, and non-antibiotic antimicrobial strategies. Front. Microbiol. 8, 1566. https://doi.org/10.3389/fmicb.2017.01566
  29. Travagli, V., Zanardi, I., Valacchi, G. and Bocci, V. 2010. Ozone and ozonated oils in skin diseases: a review. Mediators Inflamm. 2010, 610418. https://doi.org/10.1155/2010/610418
  30. Wierichs, R. J. and Meyer-Lueckel, H. 2015. Systematic review on noninvasive treatment of root caries lesions. J. Dent. Res. 94, 261-271. https://doi.org/10.1177/0022034514557330
  31. Zahardis, J. and Petrucci, G. A. 2007. The oleic acid-ozone heterogeneous reaction system: products, kinetics, secondary chemistry, and atmospheric implications of a model system-a review. Atmos. Chem. Phys. 7, 1237-1274. https://doi.org/10.5194/acp-7-1237-2007
  32. Zeng, J. and Lu, J. 2018. Mechanisms of action involved in ozone-therapy in skin diseases. Int. Immunopharmacol. 56, 235-241. https://doi.org/10.1016/j.intimp.2018.01.040
  33. Zhang, Y. Q., Ren, S. X., Li, H. L., Wang, Y. X., Fu, G., Yang, J., Qin, Z. Q., Miao, Y. G., Wang, W. Y., Chen, R. S., Shen, Y., Chen, Z., Yuan, Z. H., Zhao, G. P., Qu ,D., Danchin, A. and Wen, Y. M. 2003. Genome-based analysis of virulence genes in a non-biofilm-forming Staphylococcus epidermidis strain (ATCC 12228). Mol. Microbiol. 49, 1577-1593. https://doi.org/10.1046/j.1365-2958.2003.03671.x