• Title/Summary/Keyword: reaction phase

Search Result 2,731, Processing Time 0.03 seconds

Sintering Behavior of Ultra-fine Hydroxyapatite Powders Synthesized by Hydrothermal Reaction (수열반응으로 합성한 Hydroxyapatite 초미분말의 소결특성)

  • 최재웅;조성원;최상홀
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.11
    • /
    • pp.1265-1270
    • /
    • 1994
  • Ultra-fine hydroxyapatite powder were synthesized by the hydrothermal reaction at 10 atm, 3 hrs of Ca(OH)2 suspension with (NH4)2HPO4 solution, and were characterized sintering behavior. Sintered bodies of hydroxyapatite powders which synthesized by hydrothermal reaction method has less weight loss, less sintering shrinkage and superior mechanical property, and was more dense than sintered bodies of hydroxyapatite powder which synthesized by wet method. Sintered bodies were hydroxyapatite single phase. When soack in Ringer's solution for 2 weeks, hydroxyapatite powders preserved hydroxyapatite and sintered body absorbed trace of Ca2+ ion with soaked time.

  • PDF

Polymer-Supported Crown Ethers (II). Efficiency for Phase Transfer Catalyst (고분자 물질로 지지된 크라운 에테르류(II) 상이동 촉매 효능)

  • Jae Hu Shim;Kwang Bo Chung;Seung Hyun Chang;Dae Kyung Song;Yong Kiel Sung
    • Journal of the Korean Chemical Society
    • /
    • v.32 no.6
    • /
    • pp.593-602
    • /
    • 1988
  • Polymer-supported crown ethers (Ps-CE) which can be used for phase-transfer catalyst (PTC) were synthesized for the purpose of allowing reusable function to ordinary crown ethers, and the kinetics of the liquid-solid-liquid triphase-catalyzed nucleophilic displacement reaction of iodide (aqueous phase) on 1-bromooctane (organic phase) using synthesized Ps-CE (solid) were studied. Ps-CE were obtained by grafting of hydroxymethyl crown ethers to 1~2% cross-linked chloromethylated polystyrene. All reactions followed a pseudo-first order dependency on the 1-bromooctane concentration and the observed rate constants $(k_{obsd})$ were linearly related to the molar equivalents of Ps-CE, and were subjected to the influence of cross-linking density of polymer backbone, solvent and the reaction temperature. The catalytic activity of Ps-CE was also compared with that of structurally similar soluble crown ethers, and used Ps-CE were easily recovered after the reaction by simple filtration and could be reused without loss of catalytic activity in the same anionic displacement reaction. Enthalpies and entropies of activation associated with the displacement were 10~20kcal $mol^{-1}, 20~55eu. respectively, and the free energy of activation was ~30kcal mol^{-1}$.

  • PDF

Theoretical Studies of the Gas-Phase Identity Nucleophilic Substitution Reactions of Cyclopentadienyl Halides

  • Lee, Ik-Choon;Li, Hong-Guang;Kim, Chang-Kon;Lee, Bon-Su;Kim, Chan-Kyung;Lee, Hai-Whang
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.5
    • /
    • pp.583-592
    • /
    • 2003
  • The gas phase identity nucleophilic substitution reactions of halide anions (X = F, Cl, Br) with cyclopentadienyl halides (1) are investigated at the B3LYP/6-311+G**, MP2/6-311+G** and G2(+)MP2 levels involving five reaction pathways: σ-attack $S_N2$, β-$S_N$2'-syn, β-$S_N$2'-anti, γ-$S_N$2'-syn and γ-$S_N$2'-anti paths. In addition, the halide exchange reactions at the saturated analogue, cyclopentyl halides (2), and the monohapto circumambulatory halide rearrangements in 1 are also studied at the same three levels of theory. In the σ-attack $S_N2$ transition state for 1 weak positive charge develops in the ring with X = F while negative charge develops with X = Cl and Br leading to a higher energy barrier with X = F but to lower energy barriers with X = Cl and Br than for the corresponding reactions of 2. The π-attack β-$S_N$2' transition states are stabilized by the strong $n_C-{\pi}^{*}_{C=C}$ charge transfer interactions, whereas the π-attack γ-$S_N$2' transition states are stabilized by the strong $n_C-{\sigma}^{*}_{C-X}$ interactions. For all types of reaction paths, the energy barriers are lower with X = F than Cl and Br due to the greater bond energy gain in the partial C-X bond formation with X = F. The β-$S_N$2' paths are favored over the γ-$S_N$2' paths only with X = F and the reverse holds with X = Cl and Br. The σ-attack $S_N2$ reaction provides the lowest energy barrier with X = Cl and Br, but that with X = F is the highest energy barrier path. Activation energies for the circumambulatory rearrangement processes are much higher (by more than 18 kcal $mol^{-1}$) than those for the corresponding $S_N2$ reaction path. Overall the gas-phase halide exchanges are predicted to proceed by the σ-attack $S_N2$ path with X = Cl and Br but by the β-$S_N$2'-anti path with X = F. The barriers to the gas-phase halide exchanges increase in the order X = F < Br < Cl, which is the same as that found for the gas-phase identity methyl transfer reactions.

Expression and Characterization of Recombinant Human Cu,Zn-Superoxide Dismutase in Escherichia coli

  • Kang, Jung-Hoon;Choi, Bong-Jin;Kim, Sung-Moon
    • BMB Reports
    • /
    • v.30 no.1
    • /
    • pp.60-65
    • /
    • 1997
  • Expression of human Cu.Zn-superoxide dismutase (SOD) with activity comparable to human erythrocyte enzyme was achieved in E. coli B21(DE3) by using the pET-17b expression vector containing a T7 promoter. Recombinant human SOD was found in the cytosol of disrupted bacterial cells and represented > 25% of the total bacterial proteins. The protein produced by the E. coli cells was purified using a combination of ammonium sulfate precipitation, Sephacryl S-100 gel filtration and DEAE-Sephacel ion exchange chromatography. The recombinant Cu,Zn-SOD and human erythrocyte enzyme were compared using dismutation activity, SDS-PAGE and immunoblotting analysis. The mass of the subunits was determined to be 15,809 by using a electrospray mass spectrometer. The copper specific chelator. diethyldithiocarbamate (DOC) reacted with the recombinant Cu,Zn-SOD. At $50{\mu}M$ and $100{\mu}M$ concentrations of DOC, the dismutation activity was not inhibited for one hour but gradually reduced after one hour. This result suggests that the reaction of DOC with the enzyme occurred in two distinct phases (phase I and phase II). During phase I of this reaction, one DOC reacted with the copper center, with retention of the dismutation activity while the second DOC displaced the copper, with a loss of activity in phase II.

  • PDF

Ignition of a Vertically Positioned Fuel Plate by Thermal Radiation (열복사에 의한 수직연료면의 점화현상 해석)

  • 한조영;백승욱
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.9
    • /
    • pp.2353-2364
    • /
    • 1995
  • The ignition phenomena of a solid fuel plate of polymethyl-methacrylate(PMMA), which is vertically positioned and exposed to a thermal radiation source, is numerically studied here. A two-dimensional transient model includes such various aspects as thermal decomposition of PMMA, gas phase radiation absorption, gas phase chemical reaction and air entrainment by natural convection. Whereas the previous studies considers the problem approximately in a one-dimensional form by neglecting the natural convection, the present model takes account of the two-dimensional effect of radiation and air entrainment. The inert heating of the solid fuel is also taken into consideration. Radiative heat transfer is incorporated by th Discrete Ordinates Method(DOM) with the absorption coefficient evaluated using gas species concentration. The thermal history of the solid fuel plate shows a good agreement compared with experimental results. Despite of induced natural convective flow that induces heat loss from the fuel surface, the locally absorbed radiant energy, which is converted to the internal energy, is found to play an important role in the onset of gas phase ignition. The ignition is considered to occur when the rate of variation of gas phase reaction rate reaches its maximum value. Once the ignition takes place, the flame propagates downward.

Numerical Study on Pulverized Coal Combustion Applying Two-Phase WSGGM (이상 회체가스 가중합산모델을 적용한 미분탄 연소의 수치적 연구)

  • Yu, Myoung-Jong;Kang, Shin-Jae;Baek, Seung-Wook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.10
    • /
    • pp.1368-1379
    • /
    • 2000
  • A numerical study on swirling pulverized coal combustion in an axisymmetric enclosure is carried out by applying the 2-phase weighted sum of gray gases model (WSGGM) approach with the discrete ordinate method (DOM) to model the radiative heat transfer equation. In the radiative transfer equation, the same polynomial equation and coefficients for weighting factors as those for gas are adopted for the coal/char particles as a function of partial pressure and particle temperature. The Eulerian balance equations for mass, momentum, energy, and species mass fractions are adopted with the standard and RNG k-${\varepsilon}$ turbulence model, whereas the Lagrangian approach is used for the particulate phase. The eddy-dissipation model is employed for the reaction rate for gaseous mixture, and the single-step and two-step first-order reaction model for the devolatilization process for coal. Special attention is given to establish the thermal boundary conditions on radiative transfer equation By comparing the numerical results with experimental ones, the radiation model used here is confirmed and found to provide an alternative for simulating the radiative transfer.

Evolution pathway of CZTSe nanoparticles synthesized by microwave-assisted chemical synthesis

  • Reyes, Odin;Sanchez, Monica F.;Pal, Mou;Llorca, Jordi;Sebastian, P.J.
    • Advances in nano research
    • /
    • v.5 no.3
    • /
    • pp.203-214
    • /
    • 2017
  • In this study we present the reaction mechanism of $Cu_2ZnSnSe_4$ (CZTSe) nanoparticles synthesized by microwave-assisted chemical synthesis. We performed reactions every 10 minutes in order to identify different phases during quaternary CZTSe formation. The powder samples were analyzed by x-ray diffraction (XRD), Raman spectroscopy, energy dispersive spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). The results showed that in the first minutes copper phases are predominant, then copper and tin secondary phases react to form ternary phase. The quaternary phase is formed at 50 minutes while ternary and secondary phases are consumed. At 60 minutes pure quaternary CZTSe phase is present. After 60 minutes the quaternary phase decomposes in the previous ternary and secondary phases, which indicates that 60 minutes is ideal reaction time. The EDS analysis of pure quaternary nanocrystals (CZTSe) showed stoichiometric relations similar to the reported research in the literature, which falls in the range of Cu/(Zn+Sn): 0.8-1.0, Zn/Sn: 1.0-1.20. In conclusion, the evolution pathway of CZTSe synthesized by this novel method is similar to other synthesis methods reported before. Nanoparticles synthesized in this study present desirable properties in order to use them in solar cell and photoelectrochemical cell applications.

Direct Synthesis of Dimethyl Ether From Syngas in Slurry Phase Reactor (액상 슬러리 반응기에서 합성가스로부터 DME 직접 제조)

  • Hwang, Gap-Jin;Kim, Jung-Min;Lee, Sang-Ho;Park, Chu-Sik;Kim, Young-Ho;Kim, Jong-Won
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.15 no.2
    • /
    • pp.119-128
    • /
    • 2004
  • DME(Dimethyl Ether) was directly produced from the synthesis gas using the slurry phase reactor. The catalyst for DME production prepared two types (A type; Cu:Zn:Al=57:33:10, B type; Cu:Zn:Al=40:45:15, molar ratio). It was evaluated for the effect of the reaction medium oil using the small size slurry phase reactor. DME production yield and the methanol selectivity decreased in the order: n-hexadecane oil> mineral oil> therminol oil. The long-term test of DME production was carried out using A and B type catalyst, and n-hexadecane oil and mineral oil, respectively. It was confirmed that the use of A type for the catalyst and n-hexadecane for the reaction medium oil was very useful for the viewpoint of the DME production form the synthesis gas.

A Comparative Study on the Kinetic Factors in Taekkyon Naejirgi with and without Knee Bending of Supporting Leg (택견 내지르기 동작 시 디딤발 오금질 유무에 따른 운동역학적 차이 분석)

  • Oh, Seong-Geun;Ahn, Yong-Kil
    • Korean Journal of Applied Biomechanics
    • /
    • v.23 no.2
    • /
    • pp.131-139
    • /
    • 2013
  • Naejirgi is one of the fastest, most forceful and most often being used kicks in Taekkyon games, The purpose of this study was to investigate kinetic factors on two types of Naejirgi kick, one of which uses knee bending of supporting leg and the other uses little it. 12 taekkyoners (11 males and one female) who are the students of Y University participated in this study. They have been practicing on Taekkyon for five years or more. Positions of CoM, the elapsed time of each phase, vertical ground reaction forces, joint moments and impulses of supporting leg were analyzed for this study. The results were as follows; in Naejirgi with knee bending of supporting leg than without knee bending of supporting leg, the vertical motion range of whole body CoM was larger during phase 2 and 3, the elapsed time of phase 4 were longer, players stayed longer in the nearest location to opponent, during phase 4 the vertical ground reaction forces of supporting foot were larger, and joint extension moments and angular impulses of supporting leg (especially knee) were larger. In conclusion supporting knee bending is not a useful strategy for Naejirgi, because players stay longer in the nearest position to opponent and consumed more muscle force and energy for producing the vertical momentum which is unnecessary for pushing down the opponent.

A Linear Stability Analysis of Unsteady Combustion of Solid Propellants (고체추진제 비-정상연소의 선형 안정성해석)

  • 이창진;김성인;변영환
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.2 no.1
    • /
    • pp.59-66
    • /
    • 1998
  • The combustion instability analysis of solid propellants is generally done by the simplified governing equations for chemically inert condensed phase region with QSHOD assumption. Since the gas phase and surface reaction layer can be more rapidly relaxed to the external perturbations than the condensed phase, these regions are treated as quasi-steady manner in the analysis. In this paper, the classical ZN(Zeldovic-Novozhilov)approach was re-examined with the presence of radiation augmented burning enhancement in the combustion. Also, the surface reaction was assumed to partially absorb the incident radiant heat fluxes and pass the remaining to the chemically inert condensed phase. As a result of the analysis, the burning rate response function was obtained which consists of a pressure response function and a radiation response function. The response function was shown to be able to predict the results of T-burner tests.

  • PDF