• Title/Summary/Keyword: reaction pathway

Search Result 549, Processing Time 0.027 seconds

Formation of Hydrogen Peroxide by the Ozonation of Aqueous Humic Acid (수중 부식산의 오존처리시 생성되는 과산화수소의 농도 변화에 대한 연구)

  • Kim, Kei Woul;Rhee, Dong Seok
    • Analytical Science and Technology
    • /
    • v.13 no.5
    • /
    • pp.659-665
    • /
    • 2000
  • The changes in $UV_{254}$ and concentrations of $H_2O_2$ formed by ozonation of aqueous humic acid in ozone/high pH, peroxone process and in the presence of radical scavenger, $HCO_3{^-}$ were investigated. This study confirmed that the formation of $H_2O_2$ by ozonation may undergo different reaction pathways compared to those of $UV_{254}$ reduction in the degradation of the humic acid. The concentration of $H_2O_2$ produced by ozonation was found to be increased with decreasing pH of the sample solution due to the higher stability of ozone molecules at acidic conditions. On the while, $UV_{254}$ reduction was found to be higher at alkaline conditions or larger amount of $H_2O_2$ additions as a radical promoter in which the producing of ${\cdot}OH$, ${\cdot}HO_2$ radicals can be more favorable. From the results, it has been suggested that the formation of $H_2O_2$ by ozonation depends mainly on the direct reactions of ozone with humic acid molecules, while $UV_{254}$ reduction is affected by both the indirect reactions of the radicals and direct reactions of ozone with humic acid.

  • PDF

Bioconversion of Ginsenoside Rb1 to the Pharmaceutical Ginsenoside Compound K using Aspergillus usamii KCTC 6954 (Aspergillus usamii KCTC 6954에 의한 ginsenoside Rb1로 부터 의약용 소재인 compound K로의 생물학적 전환)

  • Jo, Mi Na;Jung, Ji En;Yoon, Hyun Joo;Chang, Kyung Hoon;Jee, Hee Sook;Kim, Kee-Tae;Paik, Hyun-Dong
    • Microbiology and Biotechnology Letters
    • /
    • v.42 no.4
    • /
    • pp.347-353
    • /
    • 2014
  • ${\beta}$-Glucosidase from Aspergillus usamii KCTC 6954 was used to convert ginsenoside Rb1 to compound K, which has a high bio-functional activity. The enzymatic activities during culturing for 15 days were determined using ${\rho}$-nitrophenyl-${\beta}$-glucopyranoside. The growth rate of the strain and the enzymatic activity were maximized after 6 days (IU; $175.93{\mu}M\;ml^{-1}\;min^{-1}$). The activities were maximized at $60^{\circ}C$ in pH 6.0. During culturing, Rb1 was converted to Rd after 9 d and then finally converted to compound K at 15 d. In the enzymatic reaction, Rb1 was converted to the ginsenoside Rd within 1 h of reaction time and compound K could be detected after 8 h. As a result, this study demonstrates that $Rb1{\rightarrow}Rd{\rightarrow}F2{\rightarrow}$compound K is the main metabolic pathway catalyzed by ${\beta}$-glucosidase and that ${\beta}$-glucosidase is a feasible option for the development of specific bioconversion processes to obtain minor ginsenosides such as Rd and compound K.

Azomethine Yilde Forming Photoreaction of N-(Tributylstannyl)methylphthalimide (N-(트리부틸스탄일)메틸프탈이미드의 아조메틴 일리드 형성 광화학 반응)

  • Jeong, Ho-Cheol;Park, Ki-Hyun;Park, Hea-Jung;Cho, Dae-Won;Yoon, Ung-Chan
    • Journal of the Korean Chemical Society
    • /
    • v.53 no.3
    • /
    • pp.302-307
    • /
    • 2009
  • Investigation was conducted to examine whether photochemical reaction of N-(tributylstannyl)- methylphthalimide generates an azomethine ylide intermediate in its excited state as its silyl derivative N-(trimethylsilyl)methylphthalimide which has been observed to form an azomethine ylide. The irradiation of N-(tributylstannyl)methylphthalimide in $D_2O-CH_3$CN generates mono-deuterated N-methylphthalimide as an exclusive product which supports the efficient generation of azomethine ylide intermediate and its trapping by water molecule through a proto-destannylation pathway. However the generated tributylstannyl subsitiuted ylide was not observed to be trapped with a dipolarophile such as methyl acrylate and acrylonitrile present in the reactions which is in contrast with the ylide from N-(trimethylsilyl)methylphthalimide.

Stereoselective Electron Transfer Reactions between Optically Active${\Delta}-cis-[Co(en)_2(NO_2)_2]^+$and rac-$[CO(Y)^{2-}$(Y=EDTA. PDTA, CyDTA) (광학활성인${\Delta}-cis-[Co(en)_2(NO_2)_2]^+$과 라세미-$[CO(Y)^{2-}$(Y=EDTA. PDTA, CyDTA)간의 입체선택적 전자전달반응)

  • Lee, Bae Wook;Kim, Dong Yeub;Lee, Dong Jin;Oh, Chang Eun;Doh, Myung Ki
    • Journal of the Korean Chemical Society
    • /
    • v.39 no.4
    • /
    • pp.275-280
    • /
    • 1995
  • The electron transfer reactions between cis-[Co(en)2(NO2)2]+ and rac-[Co(Y)]2-(Y=EDTA, PDTA, CyDTA) have been investigated in the presence of hydrogen ion. From the kinetic data, it has been found that electron transfer reactions between cis-[Co(en)2(NO2)2]+ and rac-[Co(Y)]2- proceed via inner-sphere pathway by catalysis of hydogen ion. The stereoselectivity in the electron transfer reactions between optically active △-cis-[Co(en)2(NO2)2]+ and rac-[Co(Y)]2- produced 6.0, 2.9, 3.0% e.e.(e.e.=enantiomeric excess) of △-[Co(EDTA)]-, △-[Co(PDTA)]- and △-[Co(CyDTA)]-, respectively. Based upon this observation, it seems that △-cis-[Co(en)2(NO2)2]+ is associated with rac-[Co(Y)]2- at first, and followed by the electron transfer reaction. Therefore, it was suggested that stereoselective electron transfer reaction between △-cis-[Co(en)2(NO2)2]+ and rac-[Co(Y)]2- proceed through both inner-sphere by the proton catalysis and outer-sphere with ionic association.

  • PDF

The effect of heat stress on frame switch splicing of X-box binding protein 1 gene in horse

  • Lee, Hyo Gun;Khummuang, Saichit;Youn, Hyun-Hee;Park, Jeong-Woong;Choi, Jae-Young;Shin, Teak-Soon;Cho, Seong-Keun;Kim, Byeong-Woo;Seo, Jakyeom;Kim, Myunghoo;Park, Tae Sub;Cho, Byung-Wook
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.8
    • /
    • pp.1095-1103
    • /
    • 2019
  • Objective: Among stress responses, the unfolded protein response (UPR) is a well-known mechanism related to endoplasmic reticulum (ER) stress. ER stress is induced by a variety of external and environmental factors such as starvation, ischemia, hypoxia, oxidative stress, and heat stress. Inositol requiring enzyme $1{\alpha}$ ($IRE1{\alpha}$)-X-box protein 1 (XBP1) is the most conserved pathway involved in the UPR and is the main component that mediates $IRE1{\alpha}$ signalling to downstream ER-associated degradation (ERAD)- or UPR-related genes. XBP1 is a transcription factor synthesised via a novel mechanism called 'frame switch splicing', and this process has not yet been studied in the horse XBP1 gene. Therefore, the aim of this study was to confirm the frame switch splicing of horse XBP1 and characterise its dynamics using Thoroughbred muscle cells exposed to heat stress. Methods: Primary horse muscle cells were used to investigate heat stress-induced frame switch splicing of horse XBP1. Frame switch splicing was confirmed by sequencing analysis. XBP1 amino acid sequences and promoter sequences of various species were aligned to confirm the sequence homology and to find conserved cis-acting elements, respectively. The expression of the potential XBP1 downstream genes were analysed by quantitative real-time polymerase chain reaction. Results: We confirmed that splicing of horse XBP1 mRNA was affected by the duration of thermal stress. Twenty-six nucleotides in the mRNA of XBP1 were deleted after heat stress. The protein sequence and the cis-regulatory elements on the promoter of horse XBP1 are highly conserved among the mammals. Induction of putative downstream genes of horse XBP1 was dependent on the duration of heat stress. We confirmed that both the mechanisms of XBP1 frame switch splicing and various binding elements found in downstream gene promoters are highly evolutionarily conserved. Conclusion: The frame switch splicing of horse XBP1 and its dynamics were highly conserved among species. These results facilitate studies of ER-stress in horse.

A Study on the Characteristics of a Pt/TiO2 Catalyst Prepared by Liquid-Phase Ruduction for Formaldehyde Oxidation at Room Temperature (액상환원 기반 Pt/TiO2 촉매 제조를 이용한 포름알데히드 상온 산화 반응 특성 연구)

  • Jae Heon Kim;Younghee Jang;Geo Jong Kim;Sung Chul Kim;Sung Su Kim
    • Applied Chemistry for Engineering
    • /
    • v.34 no.6
    • /
    • pp.613-618
    • /
    • 2023
  • Modern society spends more than 80% of its daily life indoors, emphasizing the need for attention to indoor air pollution due to the improvement in living standards. In this study, the performance and reaction characteristics of the Pt/TiO2 catalysts prepared by liquid-phase reduction for the removal of formaldehyde (HCHO), one of the indoor air pollutants, at room temperature without the need for additional light or heat were investigated. As a result, it showed that catalysts prepared by the same method showed approximately 40~80% various activities depending on the type of TiO2. XRD, BET, and XPS analyses were performed to investigate the particle size, crystal structure, specific surface area, and O/Ti molar ratio of the support material, and it revealed that the correlation between the properties and performance was insignificant. To explore the oxidation reaction pathway of formaldehyde (HCHO), in situ DRIFT analysis using carbon monoxide and H2-TPR was perfomed. The results revealed that the performance was demonstrated by the oxidation state of the active metal and the adsorption-desorption characteristics of the adsorbate species.

The Association of Neonatal Hyperbilirubinemia with UGT1A1 and CYP1A2 Gene Polymorphism in Korean Neonates (한국인의 신생아 황달과 UGT1A1 및 CYP1A2 유전자 다형성과의 연관성)

  • Kang, Hoon;Lim, Jun Ho;Kim, Ji Sook;Kim, Eun Ryoung;Kim, Sung Do;Lee, Hee Jae;Chung, Joo Ho
    • Clinical and Experimental Pediatrics
    • /
    • v.48 no.4
    • /
    • pp.380-386
    • /
    • 2005
  • Purpose : The incidence of nonphysiologic neonatal hyperbilirubinemia is twice as high in East Asians as in whites. Recently, UGT1A1 mutation was found to be a risk factor for neonatal hyperbilirubinemia. In congenitally-jaundiced Gunn rats, which lack expression of UDP-glucuronosyltransferase, alternative pathways can be stimulated by inducers of CYP1A1 and CYP1A2 enzymes. CYP1A2 plays a major role in bilirubin degradation of the alternate pathway. We studied the relationship between UGT1A1 and CYP1A2 gene polymorphism of neonatal hyperbilirubinemia in Koreans. Methods : Seventy-nine Korean full term neonates who had hyperbilirubinemia(serum bilirubin >12 mg/dL) without obvious causes of jaundice, were analyzed for UGT1A1 and CYP1A2 gene polymorphism; the control group was sixty-eight. We detected the polymorphism of Gly71Arg of UGT1A1 gene by direct sequencing and T2698G of CYP1A2 by polymerase chain reaction-restriction fragment length polymorphism(PCR-RFLP) using MboII and direct sequencing. Results : Allele frequency of Gly71Arg mutation in the hyperbilirubinemia group was 32 percent, which was significantly higher than 11 percent in the control group(P<0.0001). Mutant gene frequency of T2698G was 41.8 percent in patients and 32.3 percent in the control group(P=0.015), but allele frequency was 21 percent in patients and 19 percent in the control group, which was not significantly higher(P=0.706). There was no relationship between mutations of two genes(P=0.635). Conclusion : The polymorphism of UGT1A1 gene(Gly71Arg) and CYP1A2 gene(T2698G) was detected in Korean neonatal hyperbilirubinemia. Only polymorphisms of Gly71Arg in UGT1A1 were significantly higher than control group.

Global DNA Methylation Patterns and Gene Expression Associated with Obesity-Susceptibility in Offspring of Pregnant Sprague-Dawley Rats Exposed to BDE-47 and BDE-209 (임신 중 BDE-47 및 BDE-209에 노출된 어미와 새끼 Sprague-Dawley 랫드의 Global DNA 메틸화 양상과 비만 감수성과 연관된 유전자 발현)

  • Park, Byeong-Min;Yoon, Ok-Jin;Lee, Do-Hoon
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.49 no.1
    • /
    • pp.28-39
    • /
    • 2017
  • Persistent organic pollutants (POPs) can affect epigenetic mechanisms and obesity development. Polybrominated diphenyl ethers (PBDEs)-widely used to make flames-are one of the important POPs. Prenatal exposure to endocrine disrupting chemicals (EDCs), such as POPs, may affect global DNA methylation in long interspersed nuclear elements (LINE-1), increasing the risk of obesity later in life. Therefore, pregnant Sprague-Dawley (SD) rats were used to elucidate whether BDE-47 and BDE-209 transferred through placenta and breast milk cause epigenetic changes in LINE-1 and increase genetic susceptibility to obesity as obesogen during the developmental periods. Global DNA methylation in LINE-1 and gene expression related to obesity were measured in dams and offspring, using a methylation-sensitive high resolution melting analysis (MS-HRM) and direct bisulfite sequencing and quantitative real time polymerase chain reaction (qPCR), respectively. The results of MS-HRM showed global DNA hypomethylation patterns in LINE-1 of exposed offspring (2 of total 4) at PND 4, but bisulfite sequencing showed no difference in both the exposed and non-exposed groups. Gene expression in dams related to ${\beta}$-oxidation pathway and those related to adipokines showed different patterns between the two groups. On the contrary, gene expressions of offspring showed a similar pattern. Gene expressions related to ${\beta}$-oxidation pathway and obesity were significantly increased when compared with 'at birth', but not $PPAR-{\alpha}$. In conclusion, this study demonstrated the possibility that co-exposure to BDE-47 and BDE-209-via the placenta and breast milk-may affect epigenetic changes and modulate gene expression levels related to obesity.

Metabolic Study on C29-Brassinosteroids in Young Rice Plants (벼 유식물을 이용한 C29-Brassinosteroids의 대사)

  • Won, So-Yun;Joo, Se-Hwan;Kim, Seong-Ki
    • Journal of Plant Biotechnology
    • /
    • v.34 no.3
    • /
    • pp.243-251
    • /
    • 2007
  • It has been recently demonstrated the presence of not only $C_{28}-BRs$ biosysnthesis, but also $C_{27}-$ and $C_{29}-BRs$ biosynthesis in plants, suggesting that BRs biosynthesis are complicatedly connected to produce biologically active BR (s). This prompted us to investigation of metabolism of a $C_{29}-BR$, 28-homoCS in seedlings of rice from which $C_{29}-BRs$ such as 28-homoTE and 28-homoTY have been identified. In vitro enzyme conversion study using a crude enzyme solution prepared from rice seedlings revealed that 28-homoCS is converted into both CS and 26-nor-28-homoCS, but their reversed reaction did not occur. This indicated that 28-homoCS is biosynthetically converted into more biologically active $C_{28}-BR$, CS by C-28 demethylation and biodegraded into 26-nor-28-homoCS by C-26 demethylation. Next, bio-conversion of 28-homoCS to 28-homoBL was examined by the same enzyme solution. No 28-homoBL as a metabolite of 28-homoCS was detected, meaning that biosynthetic reaction for 28-homoCS to 28-homoBL is not contained, and main connection of $C_{28}-BRs$ and $C_{29}-BRs$ biosynthesis is between CS and 28-homoCS in the rice seedling. This study is the first demonstrated that $C_{29}-BRs$ and $C_{28}-BRs$ bionsynthetic pathways are connected, and that $C_{29}-BRs$ biosynthetic pathway is an alternative biosynthetic pathway to produce more biologically active $C_{28}-BR$, CS in plant.

Direct Action of Genistein on the Hypothalamic Neuronal Circuits in Prepubertal Female Rats : Estrogen Receptor Beta($ER{\beta}$) Pathway? (미성숙한 암컷 흰쥐 시상하부의 신경회로에 미치는 Genistein의 직접 작용 : 에스트로겐 수용체 베타아형 경로?)

  • Heo, Hyun-Jin;Lee, Sung-Ho
    • Development and Reproduction
    • /
    • v.15 no.2
    • /
    • pp.179-185
    • /
    • 2011
  • Some phytoestrogens in soy and red wine, for example, might have beneficiary rather than adverse effects. In particular, dietary soy intake seems to be highly correlated with protection of breast cancer, osteoporosis and cardiovascular disorders. However, questions persist on the potential adverse effects of the main soy constituent genistein (GS) on female reproductive physiology. Previously we found that prepubertal exposure to GS could activate the reproductive system of immature female rats leading to precocious puberty onset, and intracerebroventricularly (ICV) injected GS could directly activate hypothalamic kisspeptin-GnRH neuronal circuits in adult female rats. The present study was performed to examine the hypothalamus-specific GS effects in prepubertal female rats and which subtype of estrogen receptor is mediated in this GS effect. Prepubertal female rats (PND 30) were anaesthetized, treated with single dose of GS (3.4 ${\mu}g$/animal), and sacrificed at 2 hrs post-injection. To determine the transcriptional changes of reproductive hormone-related genes in hypothalamus, total RNAs were extracted and applied to the semi-quantitative reverse transcription polymerase chain reaction (RT-PCR). ICV infusion of GS significantly lowered the transcriptional activities of mTOR (1:$0.361{\pm}0.058$ AU, p<0.001) but increased that of GAD67 (1:$1.285{\pm}0.099$ AU, p<0.05), which are known to act as an upstream modulator of kisspeptin and GnRH neuronal activities in the hypothalamus, respectively. GS administration enhanced significantly the mRNA levels of KiSS-1(1:$1.458{\pm}0.078$ AU, p<0.001), and exerted no effect on the mRNA level of kisspeptin receptor GPR-54 (1:$1.29{\pm}0.08$ AU). GnRH gene expression was significantly decreased in GS-treated group compared to control group (1:$0.379{\pm}0.196$ AU, p<0.05). There was no difference in the mRNA level of $ER{\alpha}$ in the GS-treated group compare to control group (1:$1.180{\pm}0.390$ AU, Fig. 3A). However, icv infusion of GS significantly increased the transcriptional activities of $ER{\beta}$ (1:$4.209{\pm}0.796$ AU, p<0.01, Fig. 3B). Taken together, the present study indicated that the acute exposure to GS could directly alter the hypothalamic GnRH modulating system in prepubertal female rats. Our study strongly suggested the involvement of $ER{\beta}$ pathway in GS's hypothalamus-specific action, and this idea is consistent with the GS's well-known $ER{\beta}$-mediated protective action in breast cancer.