• 제목/요약/키워드: reaction force

검색결과 1,156건 처리시간 0.033초

페루프를 포함하는 다물체계에 있어서 구동방법에 따른 구동력 및 조인트 반력 해석 (Analysis of Actuating and Joint Reaction Forces for Various Drivings in Multibody Systems with Closed-Loops)

  • 이병훈;최동환
    • 대한기계학회논문집A
    • /
    • 제24권6호
    • /
    • pp.1470-1478
    • /
    • 2000
  • Analysis of actuating forces and joint reaction forces are essential to determine the capacity of actuators, to control the system and to design the components. This paper presents an algorithm tha t calculates actuating forces(or torques) depending on the various driving types to produce a given system motion. The joint reaction forces(or torques) of multibody systems with closed-loops are analyzed in the Cartesian coordinate space using the inverse velocity transformation technique. Two numerical examples were carried out to verify the algorithm proposed.

Coupled foot-shoe-ground interaction model to assess landing impact transfer characteristics to ground condition

  • Kim, S.H.;Cho, J.R.;Choi, J.H.;Ryu, S.H.;Jeong, W.B.
    • Interaction and multiscale mechanics
    • /
    • 제5권1호
    • /
    • pp.75-90
    • /
    • 2012
  • This paper investigates the effects of sports ground materials on the transfer characteristics of the landing impact force using a coupled foot-shoe-ground interaction model. The impact force resulting from the collision between the sports shoe and the ground is partially dissipated, but the remaining portion transfers to the human body via the lower extremity. However, since the landing impact force is strongly influenced by the sports ground material we consider four different sports grounds, asphalt, urethane, clay and wood. We use a fully coupled 3-D foot-shoe-ground interaction model and we construct the multi-layered composite ground models. Through the numerical simulation, the landing impact characteristics such as the ground reaction force (GRF), the acceleration transfer and the frequency response characteristics are investigated for four different sports grounds. It was found that the risk of injury, associated with the landing impact, was reduced as the ground material changes from asphalt to wood, from the fact that both the peak vertical acceleration and the central frequency monotonically decrease from asphalt to wood. As well, it was found that most of the impact acceleration and frequency was dissipated at the heel, then not much changed from the ankle to the knee.

Effect of Prolonged Running-induced Fatigue on Free-torque Components

  • Ryu, Ji-Seon
    • 한국운동역학회지
    • /
    • 제26권1호
    • /
    • pp.31-37
    • /
    • 2016
  • Purpose: The purpose of this study was to investigate the differences in FT (free-torque) components between non-fatigue and fatigue conditions induced by prolonged running. Methods: Fifteen healthy runners with no previous lower-extremity fractures ($22.0{\pm}2.1$ years of age) participated in this study. Ground reaction force data were collected for the right-stance phase for 10 strides of 5 and 125-min running periods at 1,000 Hz using an instrumented force platform (instrumented dual-belt treadmills, Bertec, USA) while the subjects ran on it. The running speed was set according to the preferences of the subjects, which were determined before the experiment. FT variables were calculated from the components of the moment and force output from the force platform. A repeated-measures one-way ANOVA was used to test for significant differences between the two conditions. The alpha level for all the statistical tests was 0.05. Results: The absolute FT at the peak braking force was significantly greater after 5 mins of running than after 125 mins of running-which was regarded as a fatigued state-but there were no significant differences in the absolute peak FT or impulse between the conditions. Conclusion: The FT variables in the fatigue condition during prolonged running hardly affect the tibial stress syndrome.

Effects of Fatigue Induction on Ground Reaction Force Components, Postural Stability, and Vertical Jump Performance in Taekwondo Athletes

  • Hyun, Seung-Hyun;Kim, Young-Pyo;Ryew, Che-Cheong
    • 한국운동역학회지
    • /
    • 제26권2호
    • /
    • pp.143-151
    • /
    • 2016
  • Objective: The purpose of this study was to investigate the effect of fatigue induction on ground reaction force (GRF) components, postural stability, and vertical jump performance in Taekwondo athletes. Method: Ten Taekwondo athletes (5 men, 5 women; mean age, $22.30{\pm}2.62years$; mean height, $174.21{\pm}9.20cm$; mean body weight, $67.28{\pm}12.56kg$) participated in this study. Fatigue was induced by a short period of strenuous exercise performed on a motorized treadmill. The analyzed variables included vertical jump performance, static stability (mediolateral [ML], center of pressure [COP], anteroposterior [AP] COP, ${\Delta}COPx$, ${\Delta}COPy$, and COP area), postural stability index values (ML stability index [MLSI], AP stability index [APSI], vertical stability index [VSI], dynamic postural stability index [DPSI]), and GRF components (ML force, AP force, peak vertical force [PVF], and loading rate). To analyze the variables measured in this study, PASW version 22.0 was used to calculate the mean and standard deviation, while a paired t-test was used to evaluate the pre- versus post-fatigue results. Pearson's correlation coefficients among variables were also analyzed. The statistical significance level was set at ${\alpha}$ = .05. Results: Vertical jump performance decreased significantly after the induction of fatigue, while AP COP, ${\Delta}COPx$, COP area, APSI, VSI, and DPSI increased significantly. PVF and loading rate increased significantly after the induction of fatigue, while the postural stability variables (AP COP, ${\Delta}COPy$, COP area, APSI, VSI, DPSI) were similarly correlated with GRF components (PVF, loading rate) after fatigue was achieved (r = .600, $R^2$ = 37%). Conclusion: These results suggest that the induction of fatigue can decrease postural stability and exercise performance of Taekwondo athletes during training and competition sessions.

Effects of Different Chair Heights on Ground Reaction Force and Trunk Flexion during Sit-to-Stand in the Elderly

  • Lee, Na-Kyung;Lee, Myoung-Hee
    • The Journal of Korean Physical Therapy
    • /
    • 제26권6호
    • /
    • pp.449-452
    • /
    • 2014
  • Purpose: The purpose of this study was to analyze the coordination between trunk flexion and lower limb extension contributing to vertical propulsion during sit-to-stand (STS) at different chair heights in the elderly. Methods: Ten elderly subjects were asked to stand up at their natural speed from different chair heights : (1) $90^{\circ}$ knee flexion; (2) $100^{\circ}$ knee flexion; (3) $110^{\circ}$ knee flexion; and (4) $120^{\circ}$ knee flexion. A standard chair without a backrest or armrests was used in this study. To remove inertial effects of upper limb movements, subjects were asked to stand up from a chair with their arms crossed at the chest. Mean of results of three trials were used in the analysis at different knee flexion angles. Distances moved by the shoulder for compensatory trunk movement was recorded by motion analysis and vertical force was recorded under foot using force plates. Distances moved by the shoulder and vertical ground reaction force measurements were analyzed using repeated ANOVA. Results: Distances moved by the shoulder significantly decreased with higher chair (p<0.05). Vertical forces were not significant difference on chair heights (p>0.05), but results of pairwise comparisons for vertical force revealed significant difference between $90^{\circ}$ knee flexion and $120^{\circ}$ knee flexion (p<0.05). Conclusion: Trunk movement is probably used as a compensatory mechanism at low chair heights to increase lift-off from sitting by the elderly.