• 제목/요약/키워드: raw material powders

검색결과 68건 처리시간 0.032초

Nb-Ni 모 합금의 테르밋 반응 효율 향상 방안 설계 (Design for Thermite Reaction Efficiency Improvement of Nb-Ni Mother Alloy)

  • 권진욱;김혜성
    • 열처리공학회지
    • /
    • 제36권1호
    • /
    • pp.33-39
    • /
    • 2023
  • In this study, the effect of mixing condition of raw material powders possessing various particle size and particle size distribution on thermite reaction efficiency was investigated. When fine raw powders are used, rather the reaction yield tends to decrease due to agglomeration. In contrast, coarse raw powders make deteriorate the contact area between raw material powders containing Al reducing agent. To ensure the optimal thermite reaction efficiency, it is required to optimize a mixture condition of raw material powders prior to thermite reaction. From the current experiment, the maximum thermite reaction efficiency is 77%, which came from Nb2O5 + NiO +Al mixtures with size distribution from 9.25 to 22.63 ㎛.

Yttirum Oxyfluoride 원료의 고상합성 및 서스펜션 플라즈마 스프레이 코팅 응용 (Solid-State Synthesis of Yttirum Oxyfluoride Powders and Their Application to Suspension Plasma Spray Coating)

  • 박상준;김형순;이성민
    • 한국재료학회지
    • /
    • 제27권12호
    • /
    • pp.710-715
    • /
    • 2017
  • We synthesized YOF(yttirum oxyfluoride) powders through solid state reactions using $Y_2O_3$ and $YF_3$ as raw materials. The synthesis of crystalline YOF was started at $300^{\circ}C$ and completed at $500^{\circ}C$. The atmosphere during synthesis had a negligible effect on the synthesis of the YOF powder under the investigated temperature range. The particle size distribution of the YOF was nearly identical to that of the mixed $Y_2O_3$ and $YF_3$ powders. When the synthesized YOF powders were used as a raw material for the suspension plasma spray(SPS) coating, the crystalline phases of the coated layer consisted of YOF and $Y_2O_3$, indicating that oxidation or evaporation of YOF powders occurred during the coating process. Based on thermogravimetric analysis, the crystalline formation appeared to be affected by the evaporation of fluoride because of the high vapor pressure of the YOF material.

Production of Fine ZnO Powders by Carbothermal Reduction

  • Choi, Heon-Jin;Lee, June-Gunn;Jung, Kwang-Taik;Kim, Ki-Hwan
    • The Korean Journal of Ceramics
    • /
    • 제4권4호
    • /
    • pp.304-310
    • /
    • 1998
  • Carbothermal reduction has been one of the important processes for the production of ceramic raw materials such as silicon carbide, silicon nitride, boron carbide, etc. The process has also been one of several trials for the recovery of ZnO from ZnO-containing waste. It usually involves two consecutive steps: the evolution of Zn vapor and its oxidation with air. In this study a ZnO-containing raw material is reduced by carbon at $1250^{\circ}C$ and the evolved Zn vapor is oxidized with air, resulting in fine powders of ZnO. computer programs, THERMO and PYROSIM developed by MINTEK, are used to simulate the process thermodynamically and the results are compared with the experimental results. It is shown that the ZnO-containing raw material can be reduced and can form fine ZnO with the yield as high as 98.7% under a proper condition. Based on these results, a process is engineered for the production of ZnO in a rotary kiln at a rate of 3 tons/day. The produced ZnO powders show properties suitable to the usual applications in ceramic industries with a purity of > 95wt% and an average particle size of ∼3${\mu}m$.

  • PDF

원료의약품 분진의 폭발 위험성 평가 (Hazard Assesment of Dust Explosion Pharmaceutical Raw Material Powders)

  • 김원성;이근원;우인성;전상용
    • 한국안전학회지
    • /
    • 제33권2호
    • /
    • pp.39-44
    • /
    • 2018
  • Dust explosions are occurring in a variety of industries. A dust explosion caused by a specific energy generates huge amount of energy in the ignition and releases decomposition gas. Damages can be increased since this released decomposition gas can cause second and subsequent explosions. In this study, the goal was to obtain practical information on what could affect the explosion by comparing the characteristics of two kinds of dusts with completely different chemical properties. Three kinds of dusts were measured and evaluated for explosion pressure, dust explosion index, explosion limit and minimum ignition energy. It is possible to grasp the characteristics of each dust and use it as useful accident prevention data in the production of raw material powder.

무기질 원료에 따른 지오폴리머의 압축강도 특성 (Compressive Strength of Geopolymers while Varying the Raw Materials)

  • 주기태;이태근;박미혜;황연
    • 한국세라믹학회지
    • /
    • 제49권6호
    • /
    • pp.575-580
    • /
    • 2012
  • Geopolymers were synthesized using raw materials produced from two different areas: one was from Indonesia and the other was from Habcheon, Korea. The constituting phases of the Indonesian raw material were quartz and kaolinite, while those of the Habcheon sample were quartz, halloysite and albite. They were both calcined at $750^{\circ}C$ for 6 hours, and solution of NaOH and water glass was added to activate the geopolymeric reaction. The compressive strength of geopolymer synthesized from the Indonesian raw material showed a low value of $151\;kgf/cm^2$ after curing for 28 days. However, it could be greatly increased by adding blast furnace slag powders of $1188\;kgf/cm^2$ and $1969\;kgf/cm^2$ at 20 wt% and 40 wt% additions, respectively. The compressive strength of the geopolymer synthesized from the Habcheon raw material was high, at $557\;kgf/cm^2$, after 28 days, and the very high early-stage (3 days) strength of $556\;kgf/cm^2$ for this sample was remarkable. Commercially available Habcheon metastate raw material, of which composition showed low CaO and $Na_2O$ contents compared to the calcined Habcheon raw material, was also examined. It was found that the compressive strength of the commercial metastate type was nearly identical to that of the calcined Habcheon raw material except for the relatively low value at an early curing stage and at a high curing temperature of $60^{\circ}C$.

하이브리드 (활성탄소+LiCoO2) 전극의 전기화학적 특성 (Electrochemical Performance of Hybrid (Activated Carbon+LiCoO2) Electrode)

  • 김익준;전민제;양선혜;김현수;문성인;오대희
    • 한국전기전자재료학회논문지
    • /
    • 제19권9호
    • /
    • pp.849-854
    • /
    • 2006
  • In this study, the hybrid electrodes, composed of the activated carbon powders and $LiCoO_{2}$ powders, were prepared as a cathode for the high-capacitance type hybrid capacitor, and the electrochemical properties of the hybrid electrodes were examined in terms of the weight composition and the milling time of $LiCoO_{2}$ powders. The specific volumetric capacities were increased with increasing of the composition of $LiCoO_{2}$ powders in the hybrid electrodes. On the other hand the coin cell capacitors, using the hybrid electrodes with $LiCoO_{2}$ poweders milled for 200 h, have exhibited the lower internal resistivities and the better capacity retention after 100 charge-discharge cycle than those of the coin cell capacitors using the hybrid electrodes with raw $LiCoO_{2}$ powders.

Novel process of rare-earth free magnet and thermochemical route for the fabrication of permanent magnet

  • Choi, Chul-Jin
    • 한국자기학회:학술대회 개요집
    • /
    • 한국자기학회 2013년도 자성 및 자성재료 국제학술대회
    • /
    • pp.89-89
    • /
    • 2013
  • Rare earth (RE) - transition metal based high energy density magnets are of immense significance in various engineering applications. $Nd_2Fe_{14}B$ magnets possess the highest energy product and are widely used in whole industries. Simultaneously, composite alloys that are cheap, cost effective and strong commercially available have drawn great attention, because rare-earth metals are costly, less abundant and strategic shortage. We designed rare-earth free alloys and fabrication process and developed novel route to prepare $Nd_2Fe_{14}B$ powders by wet process employing spray drying and reduction-diffusion (R-D) without the use of high purity metals as raw material. MnAl-base permanent magnetic powders are potentially important material for rare-earth free magnets. We have prepared the nano-sized MnAl powders by plasma arc discharge and micron-sized MnAl powders by gas atomization. They showed good magnetic property, compared with that from conventional processes. $Nd_2Fe_{14}B$ powders with high coercivity of more than 10 kOe were successfully synthesized by adjusting R-D step, followed by precise washing system. It is considered that this process can be applied for the recycling of RE-elements extracted from ewaste including motors.

  • PDF

금속환원법에 의한 바나듐 분말 추출 (Extraction of Vanadium Powder by Metallothermic Reduction)

  • 이동원;허상현;염종택;왕제필
    • 한국분말재료학회지
    • /
    • 제20권1호
    • /
    • pp.43-47
    • /
    • 2013
  • The extraction of metallic pure vanadium powder from raw oxide has been tried by Mg-reduction. In first stage, $V_2O_5$ powders as initial raw material was reduced by hydrogen gas into $V_2O_3$ phase. $V_2O_3$ powder was reduced in next stage by magnesium gas at 1,073K for 24 hours. After reduction reaction, the MgO component mixed with reduced vanadium powder were dissolved and removed fully in 10% HCl solution for 5 hours at room temperature. The oxygen content and particle size of finally produced vanadium powders were 0.84 wt% and 1 ${\mu}m$, respectively

새로운 용액환원법에 의한 구형 코발트 미세 분말의 제조 (Preparation of Spherical Cobalt Fine Powders by New Liquid Reduction Method)

  • 김대원;김지훈;최요한;최희락;윤진호
    • 한국분말재료학회지
    • /
    • 제22권4호
    • /
    • pp.260-265
    • /
    • 2015
  • Spherical fine cobalt powders were fabricated by new liquid reduction method. Commercial cobalt sufate heptahydrate was used as raw material. Also ethylene glycol was used as solvent and hydrazine-sodium hypophosphite mixture was used as reduction agent for the new liquid reduction method. A plate shaped cobalt powders with an approximately 300 nm were prepared by a traditional wet ruduction method using distilled water as solvent and hydrazine. Spherical fine cobalt powders with an average size of $1-3{\mu}m$ were synthesized by a new liquid reduction method in 0.3M cobalt sulfate and 1.5M hydrazine-0.6M sodium hypophosphite mixture at 333K.

저 순도 BaCO3 분말을 사용한 Yba2Cu3O7-y 초전도체의 합성 (Synthesis of Yba2Cu3O7-y Superconductor using a Low Purity BaCO3 Powder)

  • 김찬중;박순동;최정숙;전병혁;문종백;이상헌;성태현
    • 한국분말재료학회지
    • /
    • 제15권1호
    • /
    • pp.6-12
    • /
    • 2008
  • [ $YBa_2Cu_3O_{7-y}$ ](123) powders were synthesized by the solid state reaction method using two different purity $BaCO_3$ powders (99.75% and 99.7% purity) and $Y_2O_3$ (99.9%) and CuO (99.9%) powders. The effect of $BaCO_3$ purity on the formation of a 123 phase and the superconducting properties were investigated. The mixtures of raw powders were calcined at temperature ranges of $800^{\circ}C-880^{\circ}C$ in air and finally made into a single grain samples by a melt processing with top seeding. It was found that a 123 phase was well formed at temperature above $870^{\circ}C$, but the purity effect on the 123 formation was negligible. The single-grain 123 samples prepared from the different $BaCO_3$ powders showed the same $T_c$ value of 90.5 K and similar $J_c$ values about $10^4\;A/cm^2$ at 0 T and 77 K, and $10^3\;A/cm^2$ at 2 T and 77 K. This result indicates that the low purity, cheap price $BaCO_3$ powder can be used as a raw material for the fabrication of single-grain, high-$J_c$ superconducting levitator.