• Title/Summary/Keyword: rational curve

Search Result 130, Processing Time 0.026 seconds

Prediction of Biaxial Strength and Fatigue Life using the Concept of Equivalent Strength (등가강도 개념에 의한 탄소섬유 복합재료의 이축강도 및 피로수명 예측)

  • 이창수;황운봉
    • Composites Research
    • /
    • v.12 no.2
    • /
    • pp.53-61
    • /
    • 1999
  • A failure criterion must be considered in each failure mode and loading condition to provide easy determining strength parameters, flexibility and rational simplicity. In this study, new failure criterion was developed by introducing equivalent strength under biaxial loading of tension and torsion. The experimental results showed that the equivalent biaxial strength has a power law relation with respect to a parameter, cos($tan^{-1}R_b$). Failure strength under biaxial loadings could be predicted as a function of tensile strength, torsional strength and biaxial ratio. The scattering of experimental data could be predicted using a Weibull distribution function and the concept of equivalent biaxial strength. Also, in this study, a fatigue theory was developed based on a plane stress model which enabled the S-N curve for combined stress states to be predicted from the S-N data for uniaxial loading. The prediction models can be predicted a biaxial strength and fatigue life of general laminated composite naterials under multi-axial loadings.

  • PDF

Present Status and Prospect of Valuation for Tangible Fixed Asset in South Korea (유형고정자산 가치평가 현황: 우리나라 사례를 중심으로)

  • Jin-Hyung Cho;Hyun-Seung O;Sae-Jae Lee
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.1
    • /
    • pp.91-104
    • /
    • 2023
  • The records system is believed to have started in Italy in the 14th century in line with trade developments in Europe. In 1491, Luca Pacioli, a mathematician, and an Italian Franciscan monk wrote the first book that described double-entry accounting processes. In many countries, including Korea, the government accounting standards used single-entry bookkeeping rather than double-entry bookkeeping that can be aggregated by account subject. The cash-based and single-entry bookkeeping used by the government in the past had limitations in providing clear information on financial status and establishing a performance-oriented financial management system. Accordingly, the National Accounting Act (promulgated in October 2007) stipulated the introduction of double-entry bookkeeping and accrual accounting systems in the government sector from January 1, 2009. Furthermore, the Korean government has also introduced International Financial Reporting Standards (IFRS), and the System of National Accounts (SNA). Since 2014, Korea owned five national accounts. In Korea, valuation began with the 1968 National Wealth Statistics Survey. The academic origins of the valuation of national wealth statistics which had been investigated by due diligence every 10 years since 1968 are based on the 'Engineering Valuation' of professor Marston in the Department of Industrial Engineering at Iowa State University in the 1930s. This field has spread to economics, etc. In economics, it became the basis of capital stock estimation for positive economics such as econometrics. The valuation by the National Wealth Statistics Survey contributed greatly to converting the book value of accounting data into vintage data. And in 2000 National Statistical Office collected actual disposal data for the 1-digit asset class and obtained the ASL(average service life) by Iowa curve. Then, with the data on fixed capital formation centered on the National B/S Team of the Bank of Korea, the national wealth statistics were prepared by the Permanent Inventory Method(PIM). The asset classification was also classified into 59 types, including 2 types of residential buildings, 4 types of non-residential buildings, 14 types of structures, 9 types of transportation equipment, 28 types of machinery, and 2 types of intangible fixed assets. Tables of useful lives of tangible fixed assets published by the Korea Appraisal Board in 1999 and 2013 were made by the Iowa curve method. In Korea, the Iowa curve method has been adopted as a method of ASL estimation. There are three types of the Iowa curve method. The retirement rate method of the three types is the best because it is based on the collection and compilation of the data of all properties in service during a period of recent years, both properties retired and that are still in service. We hope the retirement rate method instead of the individual unit method is used in the estimation of ASL. Recently Korean government's accounting system has been developed. When revenue expenditure and capital expenditure were mixed in the past single-entry bookkeeping we would like to suggest that BOK and National Statistical Office have accumulated knowledge of a rational difference between revenue expenditure and capital expenditure. In particular, it is important when it is estimated capital stock by PIM. Korea also needs an empirical study on economic depreciation like Hulten & Wykoff Catalog A of the US BEA.

Seismic Performance of Column-Footing Connection of Modular Pier using CFT (CFT를 이용한 모듈러 교각 기둥-기초 연결부의 내진성능)

  • Kim, Ji Young;Kim, Ki Doo;Ma, Hyang Wook;Chung, Chul-Hun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.1
    • /
    • pp.73-85
    • /
    • 2014
  • The CFT (Concrete Filled steel Tubes) column-footing connection is cast-in-place embedded type which provides simple construction procedure, low cost, and superior structural performance. In this study, CFT column-footing connection of modular pier is proposed and structural performance is evaluated by experimental tests. To evaluate structural performance of the CFT column-footing connection, a series of experimental tests were performed for the 4 specimens with different embedded depth. As a result of the quasi-static test, the specimen with 0.6D (0.6 times the outside diameter of steel tube) embedded depth showed relatively low ductility than other specimens with larger embedded depth due to cone failure of base concrete occurred during the lower loading step. On the contrary, cone failure of the base concrete was not observed in the specimens with larger embedded depth than 0.9D, but typical flexural failure in lower part of CFT column was observed. With the analyses of force-displacement curve, displacement ductility, and energy dissipation capacity, it is concluded that the rational range of embedded depth of the CFT column-footing connection is from 0.9D to 1.2D in view of good seismic performance.

Statistical significance test of polynomial regression equation for Huff's quartile method of design rainfall (설계강우량의 Huff 4분위 방법 다항회귀식에 대한 유의성 검정)

  • Park, Jinhee;Lee, Jaejoon;Lee, Sungho
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.3
    • /
    • pp.263-272
    • /
    • 2018
  • For the design of hydraulic structures, the design flood discharge corresponding to a specific frequency is generally used by using the design storm calculated according to the rainfall-runoff relationship. In the past, empirical equations such as rational equations were used to calculate the peak flow rate. However, as the duration of rainfall is prolonged, the outflow patterns are different from the actual events, so the accuracy of the temporal distribution of the probability rainfall becomes important. In the present work, Huff's quartile method is used for the temporal distribution of rainfall, and the third quartile is generally used. The regression equation for Huff's quadratic curve applies a sixth order polynomial equation because of its high accuracy throughout the duration of rainfall. However, in statistical modeling, the regression equation needs to be concise in accordance with the principle of simplicity, and it is necessary to determine the regression coefficient based on the statistical significance level. Therefore, in this study, the statistical significance test for regression equation for temporal distribution of the Huff's quartile method, which is used as the temporal distribution method of design rainfall, is conducted for 69 rainfall observation stations under the jurisdiction of the Korea Meteorological Administration. It is statistically significant that the regression equation of the Huff's quartile method can be considered only up to the 4th order polynomial equation, as the regression coefficient is significant in most of the 69 rainfall observation stations.

The Stability Evaluation Methods of Embankment on Soft Clay (연약지반 성토의 안정평가 방법)

  • Kang, Yea Mook;Lee, Dal Won;Kim, Ji Hoon;Kim, Tae Woo;Lim, Seong Hun
    • Korean Journal of Agricultural Science
    • /
    • v.25 no.2
    • /
    • pp.260-270
    • /
    • 1998
  • The field tests were performed to suggest the rational method for stability evaluation of soft clay. The behavior of settlement-displacement obtained by field monitoring system was to compare and analyze the results of the observationed method, and to investigate the complex behavior of soft clay with filling height. The results of this study are summarized as follows. 1. The horizontal displacement was suddenly increased when physical properties of soft clay showed maximum values and the part of the turning point. The values of these properties were available to the fundamental data for stability evaluation. The shear deformation appeared that difference of the horizontal displacement was maximum values. 2. Although the stability of embankment by step filling showed the unstable part over the failure standard line, the embankment was confirmed stable. So the evaluation of the stability of embankment is reasonable to use the inclination of curve than failure standard line. 3. The horizontal displacement and relative settlement were increased as same ratio at improvement ground. Estimation of shear deformation using Terzaghi's modified bearing capacity should consider the relations of embankment load and undrained shear strength at nonimprovement ground, and minimum safety factor is recommended to use larger than 1.2. 4. Excess pore water pressure was increased with increasing of filling height and decreased with maintain the filling height. The embankment was unstable when filling height was exceed the evaluation standard line, and the behavior of excess pore water pressure and horizontal displacement could use as a standard of judgement of the filling velocity control because their behavior were agree with each other.

  • PDF

A Regression-Based Estimation of Strain Distribution for Safety Monitoring of the Steel Girder Subjected to Uncertain Loads (불확실한 하중을 받는 강재 보 구조물 안전도 모니터링을 위한 변형률 분포의 회귀 분석적 추정)

  • Lee, Ji Hoon;Choi, Se Woon;Park, Hyo Seon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.2
    • /
    • pp.10-20
    • /
    • 2013
  • To evaluate the safety of a beam structure, strains are measured as an indicator of structural states. However, unless strain sensors are installed exactly on where maximum or other representative strains occur, the techniques by which rational assessment through measured strains is accomplished are required. Thus, this study suggests a process to estimate strain distribution on the steel beam from discrete strains measured by sensors. In the presented technique, the targeted beam is regarded to be subjected to unknown loads so that applicability is enhanced. Final strain distribution is given as form of a function after regression analysis. To verify the performance of estimation, a bending test for steel beam on which distributed and concentrated loads simultaneously act is conducted. From the comparison between estimated and directly measured strains in the test, the curve of strain distribution and the strain at arbitrary location could be predicted within maximum relative error 3.32% and maximum absolute error of $2.32{\mu}{\varepsilon}$, respectively. Thus reliable and practical monitoring is expected to apply effectively for the steel beam structure.

Development of a 2 Dimensional Numerical Landscape Evolution Model on a Geological Time Scale (2차원 지질시간 규모 수치지형발달모형의 개발)

  • Byun, Jong-Min;Kim, Jong-Wook
    • Journal of the Korean Geographical Society
    • /
    • v.46 no.6
    • /
    • pp.673-692
    • /
    • 2011
  • Advances in computer technology have enabled us to develop and use numerical landscape evolution models (NLEMs) for exploring the dynamics of geomorphic system from a variety of viewpoints which previously could have not been taken. However, as of yet there have been no trials using or developing NLEMs in Korea. The purpose of this research is to develop a 2 dimensional NLEM on a geological time scale and evaluate its usefulness. The newly developed NLEM (ND-NLEM) treats bedrock weathering as one of the major geomorphic processes and attempts to simulate the thickness of soil. As such it is possible to model the weathering-limited as well as the transport-limited environment on hillslopes. Moreover the ND-NLEM includes not only slow and continuous mass transport like soil creep, but also rapid and discrete mass transport like landslides. Bedrock incision is simulated in the ND-NLEM where fluvial transport capacity is large enough to move all channel bed loads, such that ND-NLEM can model the detachment-limited environment. Furthermore the ND-NLEM adopts the D-infinity algorithm when routing flows in the model domain, so it reduces distortion due to the use of the steepest descent slope flow direction algorithm. In the experiments to evaluate the usefulness of the ND-NLEM, characteristics of the channel network observed from the model results were similar to those of the case study area for comparison, and the hypsometry curve log during the experiment showed rational evidence of landscape evolution. Therefore, the ND-NLEM is shown to be useful for simulating landscape evolution on a geological time scale.

Development of Continuous Rainfall-Runoff Model for Flood Forecasting on the Large-Scale Basin (대유역 홍수예측을 위한 연속형 강우-유출모형 개발)

  • Bae, Deg-Hyo;Lee, Byong-Ju
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.1
    • /
    • pp.51-64
    • /
    • 2011
  • The objective of this study is to develop a continuous rainfall-runoff model for flood prediction on a large-scale basin. For this study, the hourly surface runoff estimation method based on the variable retention parameter and runoff curve number is developed. This model is composed that the soil moisture to continuous rainfall can be simulated with applying the hydrologic components to the continuous equation for soil moisture. The runoff can be simulated by linking the hydrologic components with the storage function model continuously. The runoff simulation to large basins can be performed by using channel storage function model. Nakdong river basin is selected as the study area. The model accuracy is evaluated at the 8 measurement sites during flood season in 2006 (calibration period) and 2007~2008 (verification period). The calibrated model simulations are well fitted to the observations. Nash and Sutcliffe model efficiencies in the calibration and verification periods exist in the range of 0.81 to 0.95 and 0.70 to 0.94, respectively. The behavior of soil moisture depending on the rainfall and the annual loadings of simulated hydrologic components are rational. From this results, continuous rainfall-runoff model developed in this study can be used to predict the discharge on large basins.

A Study on Seismic Performance Evaluation of Tunnel to Considering Material Nonlinearity (재료의 비선형성을 고려한 터널의 내진성능평가에 관한 연구)

  • Choi, Byoungil;Ha, Myungho;Noh, Euncheol;Park, Sihyun;Kang, Gichun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.3
    • /
    • pp.92-102
    • /
    • 2022
  • Various numerical analysis models can be used to evaluate the behavior characteristics of tunnel facilities which are representative underground structures. In general, the Mohr-Coulomb model, which is most often used for numerical analysis, is an elastic-perfect plastic behavior model. And the deformation characteristics are the same during the load increase-load reduction phase. So there is a problem that the displacement may appear different from the field situation in the case of excavation analysis. In contrast, the HS-small strain stability model has a wide range of applications for each ground. And it is known that soil deformation characteristics can be analyzed according to field conditions by enabling input of initial elastic modulus and nonlinear curve parameter and so on. However, civil engineers are having difficulty using nonlinear models that can apply material nonlinear properties due to difficulties in estimating ground property coefficients. In this study, the necessity of rational model selection was reviewed by comparing the results of seismic performance evaluation using the Mohr-Coulomb model, which civil engineers generally apply for numerical analysis of tunnels, and the HS Small strain Stiffness model, which can consider ground nonlinearity.

Studies on the Derivation of the Instantaneous Unit Hydrograph for Small Watersheds of Main River Systems in Korea (한국주요빙계의 소유역에 대한 순간단위권 유도에 관한 연구 (I))

  • 이순혁
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.19 no.1
    • /
    • pp.4296-4311
    • /
    • 1977
  • This study was conducted to derive an Instantaneous Unit Hydrograph for the accurate and reliable unitgraph which can be used to the estimation and control of flood for the development of agricultural water resources and rational design of hydraulic structures. Eight small watersheds were selected as studying basins from Han, Geum, Nakdong, Yeongsan and Inchon River systems which may be considered as a main river systems in Korea. The area of small watersheds are within the range of 85 to 470$\textrm{km}^2$. It is to derive an accurate Instantaneous Unit Hydrograph under the condition of having a short duration of heavy rain and uniform rainfall intensity with the basic and reliable data of rainfall records, pluviographs, records of river stages and of the main river systems mentioned above. Investigation was carried out for the relations between measurable unitgraph and watershed characteristics such as watershed area, A, river length L, and centroid distance of the watershed area, Lca. Especially, this study laid emphasis on the derivation and application of Instantaneous Unit Hydrograph (IUH) by applying Nash's conceptual model and by using an electronic computer. I U H by Nash's conceptual model and I U H by flood routing which can be applied to the ungaged small watersheds were derived and compared with each other to the observed unitgraph. 1 U H for each small watersheds can be solved by using an electronic computer. The results summarized for these studies are as follows; 1. Distribution of uniform rainfall intensity appears in the analysis for the temporal rainfall pattern of selected heavy rainfall event. 2. Mean value of recession constants, Kl, is 0.931 in all watersheds observed. 3. Time to peak discharge, Tp, occurs at the position of 0.02 Tb, base length of hlrdrograph with an indication of lower value than that in larger watersheds. 4. Peak discharge, Qp, in relation to the watershed area, A, and effective rainfall, R, is found to be {{{{ { Q}_{ p} = { 0.895} over { { A}^{0.145 } } }}}} AR having high significance of correlation coefficient, 0.927, between peak discharge, Qp, and effective rainfall, R. Design chart for the peak discharge (refer to Fig. 15) with watershed area and effective rainfall was established by the author. 5. The mean slopes of main streams within the range of 1.46 meters per kilometer to 13.6 meter per kilometer. These indicate higher slopes in the small watersheds than those in larger watersheds. Lengths of main streams are within the range of 9.4 kilometer to 41.75 kilometer, which can be regarded as a short distance. It is remarkable thing that the time of flood concentration was more rapid in the small watersheds than that in the other larger watersheds. 6. Length of main stream, L, in relation to the watershed area, A, is found to be L=2.044A0.48 having a high significance of correlation coefficient, 0.968. 7. Watershed lag, Lg, in hrs in relation to the watershed area, A, and length of main stream, L, was derived as Lg=3.228 A0.904 L-1.293 with a high significance. On the other hand, It was found that watershed lag, Lg, could also be expressed as {{{{Lg=0.247 { ( { LLca} over { SQRT { S} } )}^{ 0.604} }}}} in connection with the product of main stream length and the centroid length of the basin of the watershed area, LLca which could be expressed as a measure of the shape and the size of the watershed with the slopes except watershed area, A. But the latter showed a lower correlation than that of the former in the significance test. Therefore, it can be concluded that watershed lag, Lg, is more closely related with the such watersheds characteristics as watershed area and length of main stream in the small watersheds. Empirical formula for the peak discharge per unit area, qp, ㎥/sec/$\textrm{km}^2$, was derived as qp=10-0.389-0.0424Lg with a high significance, r=0.91. This indicates that the peak discharge per unit area of the unitgraph is in inverse proportion to the watershed lag time. 8. The base length of the unitgraph, Tb, in connection with the watershed lag, Lg, was extra.essed as {{{{ { T}_{ b} =1.14+0.564( { Lg} over {24 } )}}}} which has defined with a high significance. 9. For the derivation of IUH by applying linear conceptual model, the storage constant, K, with the length of main stream, L, and slopes, S, was adopted as {{{{K=0.1197( {L } over { SQRT {S } } )}}}} with a highly significant correlation coefficient, 0.90. Gamma function argument, N, derived with such watershed characteristics as watershed area, A, river length, L, centroid distance of the basin of the watershed area, Lca, and slopes, S, was found to be N=49.2 A1.481L-2.202 Lca-1.297 S-0.112 with a high significance having the F value, 4.83, through analysis of variance. 10. According to the linear conceptual model, Formular established in relation to the time distribution, Peak discharge and time to peak discharge for instantaneous Unit Hydrograph when unit effective rainfall of unitgraph and dimension of watershed area are applied as 10mm, and $\textrm{km}^2$ respectively are as follows; Time distribution of IUH {{{{u(0, t)= { 2.78A} over {K GAMMA (N) } { e}^{-t/k } { (t.K)}^{N-1 } }}}} (㎥/sec) Peak discharge of IUH {{{{ {u(0, t) }_{max } = { 2.78A} over {K GAMMA (N) } { e}^{-(N-1) } { (N-1)}^{N-1 } }}}} (㎥/sec) Time to peak discharge of IUH tp=(N-1)K (hrs) 11. Through mathematical analysis in the recession curve of Hydrograph, It was confirmed that empirical formula of Gamma function argument, N, had connection with recession constant, Kl, peak discharge, QP, and time to peak discharge, tp, as {{{{{ K'} over { { t}_{ p} } = { 1} over {N-1 } - { ln { t} over { { t}_{p } } } over {ln { Q} over { { Q}_{p } } } }}}} where {{{{K'= { 1} over { { lnK}_{1 } } }}}} 12. Linking the two, empirical formulars for storage constant, K, and Gamma function argument, N, into closer relations with each other, derivation of unit hydrograph for the ungaged small watersheds can be established by having formulars for the time distribution and peak discharge of IUH as follows. Time distribution of IUH u(0, t)=23.2 A L-1S1/2 F(N, K, t) (㎥/sec) where {{{{F(N, K, t)= { { e}^{-t/k } { (t/K)}^{N-1 } } over { GAMMA (N) } }}}} Peak discharge of IUH) u(0, t)max=23.2 A L-1S1/2 F(N) (㎥/sec) where {{{{F(N)= { { e}^{-(N-1) } { (N-1)}^{N-1 } } over { GAMMA (N) } }}}} 13. The base length of the Time-Area Diagram for the IUH was given by {{{{C=0.778 { ( { LLca} over { SQRT { S} } )}^{0.423 } }}}} with correlation coefficient, 0.85, which has an indication of the relations to the length of main stream, L, centroid distance of the basin of the watershed area, Lca, and slopes, S. 14. Relative errors in the peak discharge of the IUH by using linear conceptual model and IUH by routing showed to be 2.5 and 16.9 percent respectively to the peak of observed unitgraph. Therefore, it confirmed that the accuracy of IUH using linear conceptual model was approaching more closely to the observed unitgraph than that of the flood routing in the small watersheds.

  • PDF