• Title/Summary/Keyword: rate of strain

Search Result 3,162, Processing Time 0.043 seconds

Cyclic Creep Strain of Cu Pure Metal (CU 순금속의 사이클릭 크리프 변형)

  • Jeong, S.U.;Lee, H.S.
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.194-199
    • /
    • 2000
  • The creep rate is affected by the temperature and in fact. if the temperature above $T_M/2(T_M:melting\;point)$. The aim of the present investigation is to study the relationship of static creep and cyclic creep behavior of pure copper and the formulation of these phenomena with the special attention to the instantaneous strain. strain rate from time and number of cycles have the same inclination Steady state creep rate depend upon maximum stress and can be expressed as linear function according to Power law creep equations Creep rupture time has relation with creep rate. and it make a group represented as the same direct line regardless of max stress, stress ratio and the temperature. Initial strain effect on continuous creep deformation. and have guantitative relationship between elastic and Plastic strain. LMP have similar tendency than OSDP and MHP according to temperature

  • PDF

A Study on the Material Behavior of Glass Fiber Reinforced Thermoplastic Composite in Uniaxial Tension (유리 섬유 강화 열가소성 복합재료의 1축 인장시 재료거동에 대한 연구)

  • Lee, J.H.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.8
    • /
    • pp.96-101
    • /
    • 1996
  • Glass fiber reinforced polymeric composites hold considerable promise for increased use in low cost high volume applications because of the potential for processing by solid phase forming. Unfortunately, because of the wide variety of such materials, inherent bariability in properties, and complex temperature and strain rate dependence, large strain behavior of these materials has not been well characterized. Of particular importance is failure during processing due to localized necking instability, and it is this phenomenon that is primary focus of this study. The strain rate and temperature dependence is used to predict limiting tensile strains, based on Mackinack imperfection theory. Excellent correlation was obtained between theory and experiment, and the results are summarized in the limit strains as a function of temperature and stain rate.

  • PDF

Evaluation of SCC Susceptibility of Weld HAZ in Structural Steel(I) -material properties and strain rate- (강용접부의 응력부식크랙감수성 평가에 관한 연구 I -재료특성과 변형률 속도-)

  • 임재규;정대식;정세희
    • Journal of Welding and Joining
    • /
    • v.11 no.3
    • /
    • pp.48-60
    • /
    • 1993
  • The cause of corrosion failure found in structures or various components operating in severe corrosive environments has been attributed to stress corrosion cracking(SCC)which is resulting from the combined effects of corrosive environments and static tensile stress. Slow strain rate test (SSRT) provides a rapid reliable method to determine SCC susceptibility of metals and alloys for a broad range of application. The chief advantage of SSRT procedures is that it is much more aggressive in producing SCC than conventional constant strain or constant load tests, so that the testing time is considerably reduced. Therefore, in this paper, the combined effects of material properties and strain rate on the tensile ductility and fracture morphology of parents and weldment for SM45C, SCM440 and SM20C steels were examined and discussed in synthetic sea water. The susceptibility of SCC was the most severe under the strain rate of $1.0{\times}10^{-6} sec^{-1}$, and R.O.A. can be used for parent and maximum load for weldment to evaluate the parameter for SCC susceptibility.

  • PDF

Integration of Stress-Strain Rate Equations of CASM

  • Koh, Tae-Hoon
    • International Journal of Railway
    • /
    • v.3 no.4
    • /
    • pp.117-122
    • /
    • 2010
  • In transportation geotechnical engineering, stress-strain behavior of earth structures has been analyzed by numerical simulations with the implemented plasticity constitutive model. It is a fact that many advanced plasticity constitutive models on predicting the mechanical behavior of soils have been developed as well as experimental research works for geotechnical applications in the past decades. In this study, recently developed, a unified constitutive model for both clay and sand, which is referred to as CASM (clay and sand model), was compared with a classical constitutive model, Cam-Clay model. Moreover, integration methods of stress-strain rate equations using CASM were presented for simulation of undrained and drained triaxial compression tests. As a conclusion, it was observed that semi-implicit integration method has more improved accuracy of capturing strain rate response to applied stress than explicit integration by the multiple correction and iteration.

  • PDF

Effects of Strain Rate and Water Saturation on the Tensile Strength of Rocks (변형률 속도 및 수분포화가 암석의 인장강도에 미치는 영향)

  • Jung, Woo-Jin
    • Tunnel and Underground Space
    • /
    • v.20 no.2
    • /
    • pp.119-124
    • /
    • 2010
  • Hopkinson's effect tests were carried out for various strain rates on three different types of rock in both saturated and dry states in order to examine the effects of strain rate and water saturation on tensile strength. The tensile strength increased with the increase of the strain rate not only in dry state but also in saturated state. It was also especially recognizable that the dynamic tensile strength of rock in the dry state was proportional to approximately a one-third multiple of strain rate no matter what the type of rock. It was found that water saturation decreased tensile strength in the dry state of sandstone and tuff, both with high porosity, but no significant difference could be recognized between the dry and the saturated states of granite, which has a low porosity of 0.49%.

Development of a New LCF Life Prediction Model of 316L Stainless Steel at Elevated Temperature (316L 스테인리스 강의 고온 저주기 피로 수명식 개발)

  • Hong, Seong-Gu;Lee, Soon-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.3
    • /
    • pp.521-527
    • /
    • 2002
  • In this paper, tensile behavior and low cycle fatigue behavior of 316L stainless steel which is currently favored structural material for several high temperature components such as the liquid metal cooled fast breeder reactor (LMFBR) were investigated. Research was performed at 55$0^{\circ}C$, $600^{\circ}C$ and $650^{\circ}C$ since working temperature of 316L stainless steel in a real field is from 40$0^{\circ}C$ to $650^{\circ}C$. From tensile tests performed by strain controls with $1{\times}10^{-3}/s,\; l{\times}10^{ -4}/s \;and\; 1{\times}10/^{ -5}/ s $ strain rates at each temperature, negative strain rate response (that is, strain hardening decreases as strain rate increases) and negative temperature response were observed. Strain rate effect was relatively small compared with temperature effect. LCF tests with a constant total strain amplitude were performed by strain control with a high temperature extensometer at R.T, 55$0^{\circ}C$, $600^{\circ}C$, $650^{\circ}C$ and total strain amplitudes of 0.3%~0.8% were used and test strain rates were $1{times}10^{-2} /s,\; 1{times}10^{-3} /s\; and\; 1{times}10^{-4} /s$. A new energy based LCF life prediction model which can explain the effects of temperature, strain amplitude and strain rate on fatigue life was proposed and its excellency was verified by comparing with currently used models.

STRAIN RATE CHANGE FROM 0.04 TO 0.004%/S IN AN ENVIRONMENTAL FATIGUE TEST OF CF8M CAST STAINLESS STEEL

  • Jeong, Ill-Seok;Kim, Wan-Jae;Kim, Tae-Ryong;Jeon, Hyun-Ik
    • Nuclear Engineering and Technology
    • /
    • v.43 no.1
    • /
    • pp.83-88
    • /
    • 2011
  • To define the effect of strain rate variation from 0.04% to 0.004%/s on environmental fatigue of CF8M cast stainless steel, which is used as a primary piping material in nuclear power plants, low-cycle fatigue tests were conducted at operating pressure and temperature condition of a pressurized water reactor, 15 MPa and $315^{\circ}C$, respectively. A high-pressure and high-temperature autoclave and cylindrical solid fatigue specimens were used for the strain-controlled low-cycle environmental fatigue tests. It was observed that the fatigue life of CF8M stainless steel is shortened as the strain rate decreases. Due to the effect of test temperature, the fatigue data of NUREG-6909 appears a slightly shorter than that obtained by KEPRI at the same stress amplitude of $1{\times}10^3$ MPa. The environmental fatigue correction factor $F_{en}$'s calculated with inputs of the test data increases with high strain amplitude, while the $F_{en}$'s of NUREG-6909 remain constant regardless of strain amplitude.

Effect of Microstructure on Dynamic Tensile Characteristics of SPRC440 Sheet (SPRC440 강판재의 미세조직 구성이 동적 인장 특성에 미치는 영향)

  • Lee, S.H.;Rhyim, Y.M.;Lee, J.H.;Kim, I.B.;Kim, Y.D.
    • Transactions of Materials Processing
    • /
    • v.20 no.4
    • /
    • pp.309-315
    • /
    • 2011
  • The behavior of metallic materials at high strain rates shows different characteristics from those in quasi-static deformation. Therefore, the strain rate should be considered when simulating crash events. The objective of this paper is to evaluate the dynamic tensile characteristics of SPRC440 as a function of the volume fraction of phases. As-received SPRC440 is composed of ferrite and pearlite phases. However, ferrite and martensite phases were observed after heat treatment at $730^{\circ}C$ and $780^{\circ}C$ for 5 minutes, as expected by calculations based on the curves from dilatometry tests. High cross-head speed tensile tests were performed to acquire strain-stress curves at various strain rates ranging from 0.001 to $300\;s^{-1}$, which are typical in real vehicle crashes. It was observed that the flow stress increases with the strain rate and this trend was more pronounced in the as-received specimens consisting of ferrite and pearlite phases. It is speculated that the dislocation density in each phase has an influence on the strain rate sensitivity.

Investigation of the Strain Rate Effects of EPS Foam (EPS Foam의 변형률속도효과에 대한 연구)

  • Kang, Woo-Jong;Cheon, Seoung-Sik;Lee, In-Hyeok;Choi, Seon-Ung;Min, Je-Hong;Lee, Sang-Hyeok;Bae, Bong-Kook
    • Composites Research
    • /
    • v.23 no.3
    • /
    • pp.64-68
    • /
    • 2010
  • Expanded polystyrene(EPS) foams are often used in packaging to protect electrical appliances from impact loads. The energy absorbing performances of the EPS foams depend on several parameters such as density, microstructure and strain rate. Thus, the effects of the parameters on the strength of the EPS foams need to be investigated for an optimized packaging design by FEM. In this study, various EPS foams which have different densities were quasi-statically and dynamically loaded in order to obtain the stress-strain curves. EPS foams of various densities from 18.5 to 37.0kg/m3 were considered in the experiments. A drop-mass type apparatus was developed for the intermediate strain rate tests up to several hundreds/second. It was found from the experimental results that the strength of the EPS foams increase about 170% as the strain rate increases from 0.06/s to 60/s. Experimental results also showed that the strain rate sensitivity increases as the strain increases.

High Temperature Deformation Behavior of L12 Modified Titanium Trialuminides Doped with Chromium and Copper (크롬 및 구리로 치환한 L12 Titanium Trialuminides합금의 고온변형거동)

  • Han, Chang-Suk;Jin, Sung-Yooun;Bang, Hyo-In
    • Korean Journal of Materials Research
    • /
    • v.28 no.6
    • /
    • pp.317-323
    • /
    • 2018
  • Crystal structure of the $L1_2$ type $(Al,X)_3Ti$ alloy (X = Cr,Cu) is analyzed by X-ray diffractometry and the nonuniform strain behavior at high temperature is investigated. The lattice constants for the $L1_2$ type $(Al,X)_3Ti$ alloys decrease in the order of the atomic number of the substituted atom X, and the hardness tends to increase. In a compressive test at around 473K for $Al_{67.5}Ti_{25}Cr_{7.5}$, $Al_{65}Ti_{25}Cr_{10}$ and $Al_{62.5}Ti_{25}Cu_{12.5}$ alloys, it is found that the stress-strain curves showed serration, and deformation rate dependence appeared. It is assumed that the generation of serration is due to dynamic strain aging caused by the diffusion of solute atoms. As a result, activation energy of 60-95 kJ/mol is obtained. This process does not require direct involvement. In order to investigate the generation of serrations in detail, compression tests are carried out under various conditions. As a result, in the strain rate range of this experiment, serration is found to occur after 470K at a certain critical strain. The critical strain increases as the strain rate increases at constant temperature, and the critical strain tends to decrease as temperature rises under constant strain rate. This tendency is common to all alloys produced. In the case of this alloy system, the serration at around 473K corresponds to the case in which the dislocation velocity is faster than the diffusion rate of interstitial solute atoms at low temperature.