• Title/Summary/Keyword: raphanus sativus

Search Result 214, Processing Time 0.033 seconds

Glucose Determination by Using Korean Radish Anionic Peroxidase (한국산 무 (Raphanus sativus L.) anionic peroxidase를 이용한 당 정량법 연구)

  • Kim, Jae-Hong;Kim, Sung-Ho;Lee, Mi-Young
    • Applied Biological Chemistry
    • /
    • v.43 no.2
    • /
    • pp.100-105
    • /
    • 2000
  • Anionic peroxidases (POD) were isolated from Korean radish (Raphanus sativus L.) root by using fractionation with $(NH_4)_2SO_4$ and CM-cellulose ion exchange chromatography and used as the colorimetric enzyme for glucose determination. The chromogen used in this work was o-tolidine or 4-aminoantipyrine/diethylaniline (4AA/DEA) and the colored products were measured at 630 nm. Korean radish anionic POD showed much better colorimetric reaction of glucose determination with 4AA/DEA than with o-tolidine. The r values of calibration curve for glucose determination by o-tolidine and 4AA/DEA were 0.9983 and 0.9963, respectively. In order to compare the reactivity for substrate oxidation by Korean radish POD and horseradish POD, the Km values against o-dianisidine and guaiacol were measured. Korean radish POD had about 40 fold higher affinity for o-dianisidine and 2 fold higher affinity for guaiacol as revealed by Km values. These results showed that Korean radish POD could be developed as the colorimetric diagnosis reagent for glucose determination with high sensitivity.

  • PDF

Optimization of the Preparation of Domestics Wheat Cookies by Addition of Red Radish (Raphanus sativus L.) Sprout Powder (어린잎 적양무가루를 첨가한 우리밀 쿠키의 제조조건 최적화)

  • Cheon, Chun Jin;Kim, Young-Ho;Oh, Jong Chul;Kim, Jin Kon;Yu, Hyeon Hee
    • Korean Journal of Food Science and Technology
    • /
    • v.45 no.4
    • /
    • pp.441-450
    • /
    • 2013
  • The purpose of this study was optimization of the conditions for mixing different amounts of red radish (Raphanus sativus L.) sprout powder, butter, and sugar when baking domestic wheat cookies prepared using red radish sprout powder. Response surface methodology, with a central composite design comprising 5 levels and 3 variables, was used to identify the best possible combination of amounts of red radish sprout powder ($X_1$), butter ($X_2$), and sugar ($X_3$). The physical and mechanical properties of each of the 20 samples analyzed, including color L (p<0.001), color a (p<0.01), color b (p<0.001), spread ratio (p<0.001), and hardness (p<0.01), differed significantly. The results of sensory evaluations, including color (p<0.001), appearance (p<0.001), texture (p<0.001), flavor (p<0.01), taste (p<0.001), and overall quality (p<0.001) also differed significantly among the samples. The optimal compositional ratios were 5.15 g for the red radish sprout powder, 64.84 g for the butter, and 47.18 g for the sugar.

Reduction of Microbial Load on Radish (Raphanus sativus L.) Seeds by Aqueous Chlorine Dioxide and Hot Water Treatments (이산화염소수 및 열수처리에 따른 무(Raphanus sativus L.) 새싹 종자의 미생물 제어 효과)

  • Park, Kee-Jai;Lim, Jeong-Ho;Kim, Ji-Hye;Jeong, Jin-Woong;Jo, Jin-Ho;Jeong, Seong-Woong
    • Food Science and Preservation
    • /
    • v.14 no.5
    • /
    • pp.487-491
    • /
    • 2007
  • This study was conducted to investigate the effect of treatment with squeous chlorine dioxide and hot water on the germination of radish (Raphanus sativus L.) seeds, and reduction of microbial load on the seeds. Increases in treatment and the concentration of aqueous chlorine dioxide in water resulted in increasing reductions in the counts of total aerobic microbes. Seeds treated with aqueous chlorine dioxide (100 ppm/20min, 200ppm/20min) showed about a 10-fold decrease in microbial loads. Germination of seeds was not adversely affected by any treatment tested, although the germination rate of seeds in the group treated at $55^{\circ}C$ for 20 min was reduced by 10% compared to that of control. Combined treatment with hot water and aqueous chlorine dioxide yielded better out comes in both microbial reduction and seed germination rate than did single treatments. A combined treatment with 100 ppm aqueous chlorine dioxide and hot water($45^{\circ}C$ or $50^{\circ}C$) resulted in about a 100-fold decrease in microbial load whereas germination rate showed only a slight increase to $97.0{\sim}97.7%$. Total aerobic microbial counts in radish seeds were decreased by aqueous chlorine dioxide and hot water treatment in the order. aqueous $CIO_2$+ hot water > aqueous $CIO_2$ > chlorinated water > hot water > control.

Uptake of Heavy Metals by Radish (Raphanus sativus cv. sodamaltari) from the Soils after Long-Term Application of Organic Wastes (유기성 폐기물 장기시용 후 토양에서 무 (Raphanus sativus cv. sodamaltari)의 중금속 흡수)

  • Kwon, Soon-Ik;Jang, Yeon-Ah;Kim, Kye-Hoon;Jung, Goo-Bok;Kim, Min-Kyeong;Hwang, Hae;Chae, Mi-Jin;Kim, Kwon-Rae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.1
    • /
    • pp.65-72
    • /
    • 2013
  • This study was carried out to understand the long-term effects of organic waste treatments on the fate of heavy metals in soils originated from the organic wastes and consequent uptake of heavy metals by plant, together with examination of changes in soil properties and plant growth performance. In this study, the soils treated with three different organic wastes (municipal sewage sludge, alcohol fermentation processing sludge, pig manure compost) at three different rates (12.5, 25.0, 50.0 ton $ha^{-1}yr^{-1}$) for 7 years (1994 - 2000) were used. To see the long-term effect, plant growth study and soil examination were conducted twice in 2000 and 2010, respectively. There was no additional treatments of organic wastes for 10 years after the organic waste treatment for 7 years. Compared to plant growth examination conducted in 2000 using radish (Raphanus sativus cv. sodamaltari), it appeared that height, root length and diameter, fresh weight of radish grown in 2010 decreased in the plots treated with municipal sewage sludge and alcohol fermentation processing sludge and that the extent of decrease was higher with increase of sludge application rates. On the other hand, pig compost treatment increased plant height, root length and diameter, fresh weight with increasing application rates. Cu and Pb concentrations in radish root and leaves increased in 2010 compared to those in 2000 while Ni concentrations in root and leaves decreased. Zn concentration was increased only in the soils treated with pig manure compost. Multiple regression analysis among heavy metal species fractions in soils, soil pH, and metal concentrations in radish root and leaves indicated that the metal uptake by radish was governed mainly by the soil pH and subsequent increase of available heavy metal fractions in soils with organic waste treatments.

Identification and Effects of Phenolic Compounds from Some Plants (수종 식물의 페놀화합물 분석과 효과)

  • Kim, Yong-Ok;Ho-Joon Lee
    • The Korean Journal of Ecology
    • /
    • v.19 no.4
    • /
    • pp.329-340
    • /
    • 1996
  • The extracts of selected plants and analyzed phenolic compounds were used to study the effects of alleloKDICicals on seed germination and seedling growth. HPLC analysis of the aqueous extracts of seven species identified 15 phenolic compounds including caffeic acid. Among them, protocatechuic acid was detected at 65.87ppm and 6.84ppm, in Erigeron canadensis and Pinus rigida, respectively. And the extract of P. rigida showed the strongest inhibitory effect on seed germination. The extract of P. rigida leaves significantly inhibited germination and radicle growth of Raphanus sativus var. hortensis for. acanthiformis in direct proportion to concentration. However, germination of Cassia mimosoides var. nomame was stimulated by the treated extracts at the same concentrations, but root growth was inhibited at high concentrations. Except chlorogenic acid, eleven of the twelve phenolic compounds inhibited the germination of R. sativus var. hortensis for. acanthiformis. In the case of C. mimosoides var. nomame, some phenolic compounds such as chlorogenic acid, vanillic acid, protocatechuic acid, ferulic acid, gallic acid and ${\rho}-coumaric$ acid stimulated germination, while the others reduced it.

  • PDF

Effects of Inoculation of Rhizomicrobial Strains on Plant Growth at the Early Germination Stage

  • Yoo, Jae Hong
    • Journal of Applied Biological Chemistry
    • /
    • v.57 no.2
    • /
    • pp.153-157
    • /
    • 2014
  • Plant-growth-promoting rhizobacteria can affect plant growth by various direct and indirect mechanisms. This study was conducted to determine the ability of some rhizobacterial strains to enhance the seed germination of Lactuca sativa (lettuce) and Raphanus sativus (radish). Seeds were inoculated using a spore suspension ($1{\times}10^7cfumL^{-1}$) and incubated in a growth chamber at $28^{\circ}C$ under dark conditions and 65% RH. Azotobacter chroococcum and LAP mix inoculation increased the plumule length of L. sativa by 1.3, 0.8, and 0.7 cm, respectively, in comparison to the uninoculated control. Pseudomonas putida showed an increase of only 0.6 cm in plumule length when compared to the control. Inoculation of A. chroococcum, P. putida, and LAP mix enhanced the seed germination rate of R. sativus, by 10, 5, and 30%, respectively, in comparison with the uninoculated seeds. The results demonstrated that the inoculation of seeds by select rhizobacterial strains showed remarkable enhancement to the radicle length of lettuce and radish seedlings.

Microspore-derived Embryo Formation in Response to Cold Pretreatment, Washing Medium, and Medium Composition of Radish (Raphanus sativus L.)

  • Chun, Chang-Hoo;Na, Hae-Young
    • Horticultural Science & Technology
    • /
    • v.29 no.5
    • /
    • pp.494-499
    • /
    • 2011
  • Cold pretreatment, washing medium and composition of nutrient media may have marked effects on microspore embryogenesis. When microspores isolated from radish (Raphanus sativus L. cv. Gwanhun) flower buds were washed with Nitsch & Nitsch (NLN) medium liquid medium containing $130g{\cdot}L^{-1}$ sucrose (NLN-13), yields of microspore-derived embryos were greater than when using B5 liquid medium containing $130g{\cdot}L^{-1}$ sucrose. Microspore viability is known to decrease rapidly with storage; however, in this experiment, microspore viability was maintained for 24 h at $4^{\circ}C$ without media. Among the various medium concentrations used ($0.25{\times}$, $0.5{\times}$, $1.0{\times}$, $2.0{\times}$, and $4.0{\times}$ NLN liquid medium), $0.5{\times}$ NLN liquid medium induced the most efficient formation of microspore-derived embryos. In addition, microspore-derived embryos yields were greater when microspores were cultured in $0.5{\times}$ NLN liquid medium supplemented with $0.25{\times}$, $0.5{\times}$, and $1.0{\times}$ NLN microelements, compared to medium not supplemented with microelements. In this study, the highest yield of microspore-derived embryos was observed when the microspores derived from flower buds were washed using NLN-13 liquid medium and then cultured on $0.5{\times}$ NLN liquid medium supplemented with $0.25{\times}$ NLN microelements, followed by incubation at $25^{\circ}C$ for 30 days.