In the circumstance of standing out the climate change issue, the purpose of this study is to compare the efficiency of offshore and coastal fisheries according to whether or not greenhouse gas (GHG) emissions are considered, and then to present policy alternatives based on the analysis results. For analysis, the traditional data envelopment analysis (DEA), the slacks-based measure (SBM) and the SBM-undesirable models were used, and robust analysis of variance (ANOVA) and Wilcoxon Signed-rank tests were performed. As a result, the study showed that the average efficiency of fisheries decreased as the traditional DEA extended to the SBM model considering the slack and the SBM-undesirable model including the GHG emissions. Specifically, the average efficiency of the traditional DEA model, SBM model, and SBM-undesirable model was analyzed as 0.7350, 0.5820 and 0.4976 respectively. In addition, the results of the robust ANOVA and Wilcoxon Signed-rank tests all showed that there are statistically significant differences in efficiency between offshore and coastal fisheries as well as among traditional DEA, SBM and SBM-undesirable models. As a policy alternative to the analysis, it was suggested that to improve the efficiency of coastal and offshore fisheries, it is necessary to actively implement the new fishing vessel project and develop smart and electric hybrid fishing vessels.
Bhatti, A.A.;Khan, M.S.;Rehman, Z.;Hyder, A.U.;Hassan, F.
Asian-Australasian Journal of Animal Sciences
/
v.20
no.1
/
pp.12-18
/
2007
The objective of the study was to compare ranking of Sahiwal bulls selected on the basis of highest lactation milk yield of their dams with their estimated breeding values (EBVs) using an animal model. Data on 23,761 lactation milk yield records of 5,936 cows from five main Livestock Experiment Stations in Punjab province of Pakistan (1964-2004) were used for the study. At present the young A.I bulls are required to be from A-category bull-dams. Dams were categorized as A, B, C and D if they had highest lactation milk yield of ${\geq}$2,700, 2,250-2,699, 1,800-2,249 and <1,800 litres, respectively. The EBVs for lactation milk yield were estimated for all the animals using an individual animal model having fixed effect of herd-year and season of calving and random effect of animal. Fixed effect of parity and random effect of permanent environment were incorporated when multiple lactation were used. There were 396 young bulls used for semen collection and A.I during 1973-2004. However, progeny with lactation yields recorded, were available only for 91 bulls and dams could be traced for only 63 bulls. Overall lactation milk yield averaged 1,440.8 kg. Milk yield was 10% heritable with repeatability of 39%. Ranking bulls on highest lactation milk yield of their dams, the in-vogue criteria of selecting bulls, had a rank correlation of 0.167 (p<0.190) with ranking based on EBVs from animal model analysis. Bulls' EBVs for all lactations had rank correlation of 0.716 (p<0.001) with EBVs based on first lactation milk yield and 0.766 (p<0.001) with average EBVs of dam and sire (pedigree index). Ranking of bulls on highest lactation yield of their dams has no association with their ranking based on animal model evaluation. Young Sahiwal bulls should be selected on the basis of pedigree index instead of highest lactation yield of dams. This can help improve the genetic potential of the breed accruing to conservation and development efforts.
Journal of the Korean Institute of Intelligent Systems
/
v.25
no.1
/
pp.42-47
/
2015
This paper presents a rank-based formation for multiple agents based on potential functions, where the proposed method uses the relative position of two neighboring agents. The conventional formation scheme of multiple systems requires communication between agents and a central computer to get the positions of all multiple agents. In the study, differently from previous studies, the formation scheme uses the relative position of two neighboring agents in a local coordinate system. In addition, it introduces a singular agent association that considers only the relative position between an agent and its neighboring agents, instead of multiple associations among all information about all agents. Furthermore, the proposed framework explores the benefits of different formation types. Extensive simulation results show that the proposed approach verifies the viability and effectiveness of the proposed formation.
The business models has a great impact on the successful management of enterprises. Business environment has been shifting from industrial economy to knowledge-based economy. Enterprises go through numerous trials for successful management in the changing environment. Along with trial tests, research areas have been growing simultaneously. Although many researches have been conducted with regard to business models, it is very insufficient to systematically analyze the knowledge flow of research. Accordingly, successive researchers who want to study the business model may find it difficult to establish the orientation of future application research based on understanding the process of changing the knowledge structure that have accumulated so far. This study is intended to determine the current state of the business model research and to understand the process of knowledge structure changes in keywords that appear in 2,667 business model articles in the SCOPUS database. Identifying the knowledge structure has been completed through social network analysis, a methodology based on the 'relationship', and the changes in the knowledge structure were identified by classifying them into four different periods. The analysis showed that, first, the number of business model co-author increases over time with the need for academic diversity. Second, the 'innovation' keyword has the biggest center in the network, and over time, the lower-rank keyword which was in the former period has emerged as the top-rank keyword. Third, the cohesiveness group decreased from 12 before 2000 to 5 in 2015 and also the modularity decreased as well. Finally, examining characteristics of study area through a cognitive map showed that the relationships between domains increased gradually over time. The study has provided a systematic basis for understanding the current state of the business model research and the process of changing knowledge structure. In addition, considering that no research has ever systematically analyzed the knowledge structure accumulated by individual researches, it is considered as a significant study.
In this paper, we propose a new composite feature consists of both color and shape information that are suitable for the task of character image retrieval. This approach extracts shape-based information using Zernike moments from Y image in YCbCr color space. Zernike moments can extract shape-based features that are invariant to rotation, translation, and scaling. We also extract color-based information from the DCT coefficients of Cr and Cb image. This approach is good method reflecting human visual property and is suitable for web application such as large image database system and animation because higher retrieval rate has been achieved using only 36 features. In experiment, this method is applied to 3,834 character images. We confirmed that this approach brought about excellent effect by ANMRR(Average of Normalized, Modified Retrieval Rank), which is used in the evaluation measure of MPEG-7 color descriptor and BEP(Bull's Eye Performance), which is used in evaluation measure of shape descriptor in character image retrieval.
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
/
v.25
no.3
/
pp.207-213
/
2007
For several years, although the demand of high accuracy kinematic positing using multiple bases has been increased, most of the commercial GPS processing softwares can provide the single-baseline solutions only. Thus, we studied the methods to improve the accuracy of the kinematic positioning using the network configuration based on the several single-baseline solutions. As discussed in this study, the positioning accuracy as well as the network stability is improved by introducing the geodetic network adjustment theories into the kinematic positioning application. Three different methods to remove the rank-deficiency, RLESS, BLIMPBE and SCLESS, are analyzed in this study. The 3D RMS error has been improved from 3.5cm(max) to 2.1cm using the network-based kinematic positioning, and it is desired to choose BLIMPBE and SCLESS depending on the accuracy of the base stations.
This study is about a method of extracting a summary from a news article in consideration of the importance of each sentence constituting the article. We propose a method of calculating sentence importance by extracting the probabilities of topic sentence, similarity with article title and other sentences, and sentence position as characteristics that affect sentence importance. At this time, a hypothesis is established that the Topic Sentence will have a characteristic distinct from the general sentence, and a deep learning-based classification model is trained to obtain a topic sentence probability value for the input sentence. Also, using the pre-learned ELMo language model, the similarity between sentences is calculated based on the sentence vector value reflecting the context information and extracted as sentence characteristics. The topic sentence classification performance of the LSTM and BERT models was 93% accurate, 96.22% recall, and 89.5% precision, resulting in high analysis results. As a result of calculating the importance of each sentence by combining the extracted sentence characteristics, it was confirmed that the performance of extracting the topic sentence was improved by about 10% compared to the existing TextRank algorithm.
This study conducted a team-based CPR simulation with 32 fourth-year emergency rescue students to determine the effectiveness of training feedback using body cameras used at emergency rescue sites, and measured awareness, training feedback effectiveness, and satisfactio+n before and after body camera feedback. , preferences and difficulties in using body camera devices were identified. Data analysis was performed using SPSS 27.0 program, including descriptive statistics, frequency analysis, paried t-test, and Wilcoxon signed rank test. As a result of the study, the perception of body camera use showed a positive change from 3.73±0.62 points to 4.45±0.54 points, and a positive satisfaction level of 3.98±0.51 was shown (p<.001). Additionally, there was a significant increase in self-check accuracy and performance score after body camera feedback (p<.001). Therefore, during team-based simulation resuscitation training, positive feedback effects in improving self-inspection ability and performance can be achieved by watching body camera videos and using self-checklists without direct feedback from the instructor.
Improving farming activity competence of farm households has recently been considered one of the most important factors for increasing farm income. However, few studies examine the relationship between farm income and farming activity competence of farm households directly due to the lack of an available dataset. In this study, we examine the relationship between farm household technical managerial competence and farm household income based on the nearly 30,000 farm households consulting data gathered by the Rural Development Administration, RDA. The major findings of this study are as follows: firstly, statistically significant differences in agricultural and farm household income exist between farm households categorized by farm activity competence levels in terms of technique and management. Secondly, a technically and managerially competent farm household group (high-rank farm household) has 2.2 times higher agricultural income and 1.9 times higher farm household income than the technically and managerially incompetent farm household group (low-rank farm household). Thirdly, farm household technical-managerial competence is one of the major factors that affect agricultural and farm household income. Regarding technical competence, agricultural income and farm household income increased by approximately 1,390,000 won and 1,530,000 won, respectively, as technical points increased by one point. However, with respect to managerial competence, agricultural income and farm household income increased by approximately 1,320,000 won and 2,070,000 won, respectively, as managerial points increased by one point.
The performance of a novel medical question-answering engine called CliniCluster and existing search engines, such as CQA-1.0, Google, and Google Scholar, was evaluated using known-item searching. Known-item searching is a document that has been critically appraised to be highly relevant to a therapy question. Results show that, using CliniCluster, known-items were retrieved on average at rank 2 ($MRR@10{\approx}0.50$), and most of the known-items could be identified from the top-10 document lists. In response to ill-defined questions, the known-items were ranked lower by CliniCluster and CQA-1.0, whereas for Google and Google Scholar, significant difference in ranking was not found between well- and ill-defined questions. Less than 40% of the known-items could be identified from the top-10 documents retrieved by CQA-1.0, Google, and Google Scholar. An analysis of the top-ranked documents by strength of evidence revealed that CliniCluster outperformed other search engines by providing a higher number of recent publications with the highest study design. In conclusion, the overall results support the use of CliniCluster in answering therapy questions by ranking highly relevant documents in the top positions of the search results.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.