• Title/Summary/Keyword: random rotation ensemble

Search Result 6, Processing Time 0.019 seconds

Ensemble model through mixed projections useful for big data analytics (투영 조합을 통한 빅데이터 앙상블 모형)

  • Hyejoon Park;Hyunjoong Kim;Yung-Seop Lee
    • The Korean Journal of Applied Statistics
    • /
    • v.37 no.5
    • /
    • pp.691-702
    • /
    • 2024
  • In this paper, we propose mixed projection forest (MPF), a new classification ensemble method that can be effectively applied in the field of big data analysis. When training individual classifiers within an ensemble, MPF uses oblique hyperplanes using combined rotation matrix derived from data projection techniques of principal component analysis (PCA) and canonical linear discriminant analysis (CLDA), thereby improving the accuracy of each classifier. Additionally, the diversity of individual classifiers is improved by generating various rotation matrices through random partitioning of the input variable set. This approach ultimately enhances classification performance and proves to be highly effective in big data analysis that demands precision. We conducted a performance comparison of MPF with existing classification ensemble models using 30 real or simulated datasets. The results indicate that MPF achieves competitive performance in terms of classification accuracy and classifier diversity.

Ensemble Learning for Underwater Target Classification (수중 표적 식별을 위한 앙상블 학습)

  • Seok, Jongwon
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.11
    • /
    • pp.1261-1267
    • /
    • 2015
  • The problem of underwater target detection and classification has been attracted a substantial amount of attention and studied from many researchers for both military and non-military purposes. The difficulty is complicate due to various environmental conditions. In this paper, we study classifier ensemble methods for active sonar target classification to improve the classification performance. In general, classifier ensemble method is useful for classifiers whose variances relatively large such as decision trees and neural networks. Bagging, Random selection samples, Random subspace and Rotation forest are selected as classifier ensemble methods. Using the four ensemble methods based on 31 neural network classifiers, the classification tests were carried out and performances were compared.

Learning to Prevent Inactive Student of Indonesia Open University

  • Tama, Bayu Adhi
    • Journal of Information Processing Systems
    • /
    • v.11 no.2
    • /
    • pp.165-172
    • /
    • 2015
  • The inactive student rate is becoming a major problem in most open universities worldwide. In Indonesia, roughly 36% of students were found to be inactive, in 2005. Data mining had been successfully employed to solve problems in many domains, such as for educational purposes. We are proposing a method for preventing inactive students by mining knowledge from student record systems with several state of the art ensemble methods, such as Bagging, AdaBoost, Random Subspace, Random Forest, and Rotation Forest. The most influential attributes, as well as demographic attributes (marital status and employment), were successfully obtained which were affecting student of being inactive. The complexity and accuracy of classification techniques were also compared and the experimental results show that Rotation Forest, with decision tree as the base-classifier, denotes the best performance compared to other classifiers.

A Comparative Study of Phishing Websites Classification Based on Classifier Ensemble

  • Tama, Bayu Adhi;Rhee, Kyung-Hyune
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.5
    • /
    • pp.617-625
    • /
    • 2018
  • Phishing website has become a crucial concern in cyber security applications. It is performed by fraudulently deceiving users with the aim of obtaining their sensitive information such as bank account information, credit card, username, and password. The threat has led to huge losses to online retailers, e-business platform, financial institutions, and to name but a few. One way to build anti-phishing detection mechanism is to construct classification algorithm based on machine learning techniques. The objective of this paper is to compare different classifier ensemble approaches, i.e. random forest, rotation forest, gradient boosted machine, and extreme gradient boosting against single classifiers, i.e. decision tree, classification and regression tree, and credal decision tree in the case of website phishing. Area under ROC curve (AUC) is employed as a performance metric, whilst statistical tests are used as baseline indicator of significance evaluation among classifiers. The paper contributes the existing literature on making a benchmark of classifier ensembles for web phishing detection.

Automated Phase Identification in Shingle Installation Operation Using Machine Learning

  • Dutta, Amrita;Breloff, Scott P.;Dai, Fei;Sinsel, Erik W.;Warren, Christopher M.;Wu, John Z.
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.728-735
    • /
    • 2022
  • Roofers get exposed to increased risk of knee musculoskeletal disorders (MSDs) at different phases of a sloped shingle installation task. As different phases are associated with different risk levels, this study explored the application of machine learning for automated classification of seven phases in a shingle installation task using knee kinematics and roof slope information. An optical motion capture system was used to collect knee kinematics data from nine subjects who mimicked shingle installation on a slope-adjustable wooden platform. Four features were used in building a phase classification model. They were three knee joint rotation angles (i.e., flexion, abduction-adduction, and internal-external rotation) of the subjects, and the roof slope at which they operated. Three ensemble machine learning algorithms (i.e., random forests, decision trees, and k-nearest neighbors) were used for training and prediction. The simulations indicate that the k-nearest neighbor classifier provided the best performance, with an overall accuracy of 92.62%, demonstrating the considerable potential of machine learning methods in detecting shingle installation phases from workers knee joint rotation and roof slope information. This knowledge, with further investigation, may facilitate knee MSD risk identification among roofers and intervention development.

  • PDF

A Comparative Study of Phishing Websites Classification Based on Classifier Ensembles

  • Tama, Bayu Adhi;Rhee, Kyung-Hyune
    • Journal of Multimedia Information System
    • /
    • v.5 no.2
    • /
    • pp.99-104
    • /
    • 2018
  • Phishing website has become a crucial concern in cyber security applications. It is performed by fraudulently deceiving users with the aim of obtaining their sensitive information such as bank account information, credit card, username, and password. The threat has led to huge losses to online retailers, e-business platform, financial institutions, and to name but a few. One way to build anti-phishing detection mechanism is to construct classification algorithm based on machine learning techniques. The objective of this paper is to compare different classifier ensemble approaches, i.e. random forest, rotation forest, gradient boosted machine, and extreme gradient boosting against single classifiers, i.e. decision tree, classification and regression tree, and credal decision tree in the case of website phishing. Area under ROC curve (AUC) is employed as a performance metric, whilst statistical tests are used as baseline indicator of significance evaluation among classifiers. The paper contributes the existing literature on making a benchmark of classifier ensembles for web phishing detection.