• Title/Summary/Keyword: random non-response

Search Result 140, Processing Time 0.023 seconds

Bias corrected imputation method for non-ignorable non-response (무시할 수 없는 무응답에서 편향 보정을 이용한 무응답 대체)

  • Lee, Min-Ha;Shin, Key-Il
    • The Korean Journal of Applied Statistics
    • /
    • v.35 no.4
    • /
    • pp.485-499
    • /
    • 2022
  • Controlling the total survey error including sampling error and non-sampling error is very important in sampling design. Non-sampling error caused by non-response accounts for a large proportion of the total survey error. Many studies have been conducted to handle non-response properly. Recently, a lot of non-response imputation methods using machine learning technique and traditional statistical methods have been studied and practically used. Most imputation methods assume MCAR(missing completely at random) or MAR(missing at random) and few studies have been conducted focusing on MNAR (missing not at random) or NN(non-ignorable non-response) which cause bias and reduce the accuracy of imputation. In this study, we propose a non-response imputation method that can be applied to non-ignorable non-response. That is, we propose an imputation method to improve the accuracy of estimation by removing the bias caused by NN. In addition, the superiority of the proposed method is confirmed through small simulation studies.

Random vibration analysis of structures by a time-domain explicit formulation method

  • Su, Cheng;Xu, Rui
    • Structural Engineering and Mechanics
    • /
    • v.52 no.2
    • /
    • pp.239-260
    • /
    • 2014
  • Non-stationary random vibration of linear structures with uncertain parameters is investigated in this paper. A time-domain explicit formulation method is first presented for dynamic response analysis of deterministic structures subjected to non-stationary random excitations. The method is then employed to predict the random responses of a structure with given values of structural parameters, which are used to fit the conditional expectations of responses with relation to the structural random parameters by the response surface technique. Based on the total expectation theorem, the known conditional expectations are averaged to yield the random responses of stochastic structures as the total expectations. A numerical example involving a frame structure is investigated to illustrate the effectiveness of the present approach by comparison with the power spectrum method and the Monte Carlo simulation method. The proposed method is also applied to non-stationary random seismic analysis of a practical arch bridge with structural uncertainties, indicating the feasibility of the present approach for analysis of complex structures.

Generation of Artificial Earthquake Ground Motions using Nonstationary Random Process-Modification of Power Spectrum Compatible with Design Response Spectrum- (Nonstationary Random Process를 이용한 인공지진파 발생 -설계응답스펙트럼에 의한 파워스펙트럼의 조정-)

  • 김승훈
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.04a
    • /
    • pp.61-68
    • /
    • 1999
  • In the nonlinear dynamic structural analysis the given ground excitation as an input should be well defined. Because of the lack of recorded accelerograms in Korea it is required to generate an artificial earthquake by a stochastic model of ground excitation with various dynamic properties rather than recorded accelerograms. It is well known that earthquake motions are generally non-stationary with time-varying intensity and frequency content. Many researchers have proposed non-stationary random process models. Yeh and Wen (1990) proposed a non-stationary modulation function and a power spectral density function to describe such non-stationary characteristics. Satio and Wen(1994) proposed a non-stationary stochastic process model to generate earthquake ground motions which are compatible with design reponse spectrum at sites in Japan. this paper shows the process to modify power spectrum compatible with target design response spectrum for generating of nonstationary artificial earthquake ground motions. Target reponse spectrum is chosen by ATC14 to calibrate the response spectrum according to a give recurrence period.

  • PDF

Direct Ritz method for random seismic response for non-uniform beams

  • Lin, J.H.;Williams, F.W.;Bennett, P.N.
    • Structural Engineering and Mechanics
    • /
    • v.2 no.3
    • /
    • pp.285-294
    • /
    • 1994
  • Based on a fast and accurate method for the stationary random seismic response analysis for discretized structures(Lin 1992, Lin et al. 1992), a Ritz method for dealing with such responses of continuous systems in developed. This method is studied quantitatively, using cantilever shear beams for simplicity and clarity. The process can be naturally extended to deal with various boundary conditions as well as non-uniform Bernoulli-Euler beams, or even Timoshenko beams. Algorithms for both proportionally and non-proportionally damped responses are described. For all of such damping cases, it is not necessary to solve for the natural vibrations of the beams. The solution procedure is very simple, and equally efficient for a white or a non-white ground excitation spectrum. Two examples are given where various power spectral density functions, variances, covariances and second spectral moments of displacement, internal force response, and their derivatives are calculated and analyses. Some Ritz solutions are compared with "exact" CQC solutions.

Optimization of active vibration control for random intelligent truss structures under non-stationary random excitation

  • Gao, W.;Chen, J.J.;Hu, T.B.;Kessissoglou, N.J.;Randall, R.B.
    • Structural Engineering and Mechanics
    • /
    • v.18 no.2
    • /
    • pp.137-150
    • /
    • 2004
  • The optimization of active bars' placement and feedback gains of closed loop control system for random intelligent truss structures under non-stationary random excitation is presented. Firstly, the optimal mathematical model with the reliability constraints on the mean square value of structural dynamic displacement and stress response are built based on the maximization of dissipation energy due to control action. In which not only the randomness of the physics parameters of structural materials, geometric dimensions and structural damping are considered simultaneously, but also the applied force are considered as non-stationary random excitation. Then, the numerical characteristics of the stationary random responses of random intelligent structure are developed. Finally, the rationality and validity of the presented model are demonstrated by an engineering example and some useful conclusions are obtained.

Families of Estimators of Finite Population Variance using a Random Non-Response in Survey Sampling

  • Singh, Housila P.;Tailor, Rajesh;Kim, Jong-Min;Singh, Sarjinder
    • The Korean Journal of Applied Statistics
    • /
    • v.25 no.4
    • /
    • pp.681-695
    • /
    • 2012
  • In this paper, a family of estimators for the finite population variance investigated by Srivastava and Jhajj (1980) is studied under two different situations of random non-response considered by Tracy and Osahan (1994). Asymptotic expressions for the biases and mean squared errors of members of the proposed family are obtained; in addition, an asymptotic optimum estimator(AOE) is also identified. Estimators suggested by Singh and Joarder (1998) are shown to be members of the proposed family. A correction to the Singh and Joarder (1998) results is also presented.

Comparison Between Two Analytical Solutions for Random Vibration Responses of a Spring-Pendulum System with Internal Resonance (내부공진을 가진 탄성진자계의 불규칙 진동응답을 위한 두 해석해의 비교)

  • 조덕상;이원경
    • Journal of KSNVE
    • /
    • v.8 no.4
    • /
    • pp.715-722
    • /
    • 1998
  • An investigation into the stochastic bifurcation and response statistics of an autoparameteric system under broad-band random excitation is made. The specific system examined is a spring-pendulum system with internal resonance, which is known to be a good model for a variety of engineering systems, including ship motions with nonlinear coupling between pitching and rolling motions. The Fokker-Planck equations is used to genrage a general first-order differential equation in the dynamic moment of response coordinates. By means of the Gaussian and non-Gaussian closure methods the dynamic moment equations for the random responses of the system are reduced to a system of autonomous ordinanary differential equations. In view of equilibrium solutions of this system and their stability we examine the stochastic bifurcation and response statistics. The analytical results are compared with results obtained by Monte Carlo simulation.

  • PDF

Policies for Improving the Survey of Research and Development in Science and Technology: The Case of Industrial Sector (과학기술연구개발활동조사의 개선방안 -기업부문을 중심으로-)

  • 유승훈;문혜선
    • Journal of Korea Technology Innovation Society
    • /
    • v.5 no.2
    • /
    • pp.228-244
    • /
    • 2002
  • The survey of research and development (R&D) in science and technology (S&T) covers the current status of R&D activities in S&T in Korea, and provides a basis for decision making regarding S&T policy. Continuous improvement of the survey is widely needed to present reliable national basic statistics. Therefore, the purpose of the study is two-fold: to introduce sampling survey method in industrial sector and to make statistical technique to deal with non-response data from industrial sector. To these ends, first, case studies of the United States and Japan are illustrated. A new sampling design for the R&D survey is proposed and implementing stratified random sampling scheme is suggested. Moreover, statistical analysis of the non-response data is dealt with. Based on several screening criteria, we develop a new imputation method suitable for the R&D survey and also provide more detailed implementation plan. Various solutions to a problem arising from non-response item are also presented. Finally, some implications of the results are discussed.

  • PDF

Evaluation of the Block Effects in Response Surface Designs with Random Block Effects over Cuboidal Regions

  • Park, Sang-Hyun
    • Communications for Statistical Applications and Methods
    • /
    • v.7 no.3
    • /
    • pp.741-757
    • /
    • 2000
  • In may experimental situations, whenever a block design is used, the block effect is usually considered to be fixed. There are, however, experimental situations in which it should be treated as random. The choice of a blocking arrangement for a response surface design can have a considerable effect on estimating the mean response and on the size of he prediction variance even if the experimental runs re the same. Therefore, care should be exercised in the selection of blocks. In this paper, in the presence of a random block effect, we propose a graphical method or evaluating the effect of blocking in response surface designs using cuboidal regions. This graphical method can be used to investigate how the blocking has influence on the prediction variance throughout all experimental regions of interest when this region is cuboidal, and compare the block effects in the cases of the orthogonal and non-orthogonal block designs, respectively.

  • PDF

Stochastic Response of a Hinged-Clamped Beam (Hinged-clamped 보의 확률적 응답특성)

  • Cho, Duk-Sang
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.3 no.1
    • /
    • pp.43-51
    • /
    • 2000
  • The response statistics of a hinged-clamped beam under broad-band random excitation is investigated. The random excitation is applied at the nodal point of the second mode. By using Galerkin's method the governing equation is reduced to a system of nonautonomous nonlinear ordinary differential equations. A method based upon the Markov vector approach is used to generate a general first-order differential equation in the dynamic moment of response coordinates. By means of the Gaussian and non-Gaussian closure methods the dynamic moment equations for the random responses of the system are reduced to a system of autonomous ordinary differential equations. The case of two mode interaction is considered in order to compare it with the case of three mode interaction. The analytical results for two and three mode interactions are also compared with results obtained by Monte Carlo simulation.

  • PDF