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Abstract

In this paper, a family of estimators for the finite population variance investigated by Srivastava and Jhajj

(1980) is studied under two different situations of random non-response considered by Tracy and Osahan

(1994). Asymptotic expressions for the biases and mean squared errors of members of the proposed family

are obtained; in addition, an asymptotic optimum estimator(AOE) is also identified. Estimators suggested

by Singh and Joarder (1998) are shown to be members of the proposed family. A correction to the Singh

and Joarder (1998) results is also presented.

Keywords: Finite population variance, study and auxiliary variables, bias, mean squared error, random

non-response.

1. Introduction

A finite population parameter can be estimated more accurately by making use of information on

an auxiliary variable x that is correlated with the study variable y. Ratio and regression methods

of estimation are good examples in this context. Isaki (1983) showed that under realistic conditions

efficient estimators of the finite population variance exist in the presence of auxiliary information.

Let y denote the character whose population variance S2
y = {

∑N
i=1(yi − Ȳ )2}/(N − 1) is estimated

using information on an auxiliary variable x, where Ȳ = (
∑N

i=1 yi)/(N − 1). Assuming that the

population mean X̄ = (
∑N

i=1 xi)/(N − 1) and variance S2
x = {

∑N
i=1(xi − X̄)2}/(N − 1) of x are

known, Isaki (1983) proposed a ratio estimator:

d1 = s2y

(
S2
x

s2x

)
, (1.1)

where s2y = {
∑n

i=1(yi − ȳ)2}/(n− 1) and s2x = {
∑n

i=1(xi − x̄)2}/(n− 1) with ȳ = (
∑n

i=1 yi)/n and

x̄ = (
∑n

i=1 xi)/n.
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When X̄ and S2
x are known, Srivastava and Jhajj (1980) proposed a family of estimators for S2

y

given by

d2 = s2yh(u, v), (1.2)

where u = x̄/X̄, v = s2x/S
2
x and h(u, v) is a parametric function that satisfies certain conditions

given in Srivastava and Jhajj (1980) and is such that h(1, 1) = 1. The bias and mean squared

error(MSE) of d2, to the first degree of approximation, are

B(d2) = θ

(
S2
y

2

)[
λ21Cxh1(1, 1) + (λ22 − 1)h2(1, 1) + C2

xh11(1, 1) + 2λ03Cxh12(1, 1)

+ (λ04 − 1)h22(1, 1)] (1.3)

MSE(d2) = θS4
y

[
(λ40 − 1) + C2

xh
2
1(1, 1) + (λ04 − 1)h2

2(1, 1)

+2λ21Cxh1(1, 1) + 2(λ22 − 1)h2(1, 1) + 2λ03Cxh1(1, 1)h2(1, 1)] , (1.4)

where θ = (1/n− 1/N), Cx = Sx/X̄, hi(1, 1), i = 1, 2 and hij(u, v), i, j = 1, 2 denote the first and

second order partial derivatives of h(u, v),

λls = µls

(
µ

l
2
20µ

s
2
02

)−1

, (1.5)

and

µls = (N − 1)−1
N∑
i=1

(
yi − Ȳ

)l (
xi − X̄

)s
, (l, s) = 0, 1, 2, 3, 4. (1.6)

The MSE of d2 is minimized for

h1(1, 1) =
λ03(λ22 − 1)− λ21(λ04 − 1)

Cx(λ04 − λ2
03 − 1)

= A and h2(1, 1) =
(λ21λ03 − λ22 + 1)

λ04 − λ2
03 − 1

= B (say). (1.7)

This gives the minimum MSE of d2 as

min.MSE(d2) = θS4
y [λ40 − 1−D], (1.8)

where

D = λ2
21 +

(λ21λ03 − λ22 + 1)2

λ04 − λ2
03 − 1

. (1.9)

Note that d1 is a particular case of d2.

Singh and Joarder (1998) studied the properties of d1 under two different situations of a random

non-response considered by Tracy and Osahan (1994): (i) random non-response on both the study

and auxiliary variables, and (ii) on the study variable only. In this paper, we study the effect

of random non-response on the study and auxiliary variables of several families of estimators of

variance. The estimators reported by Singh and Joarder (1998) are shown to be particular cases of

the proposed families.
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2. Notation and Expectations

Let U = (U1, U2, . . . , UN ) denote a population of N units from which a simple random sample of size

n is drawn without replacement. If r (r = 0, 1, 2, . . . , (n− 2)) denotes the number of sampling units

on which information could not be obtained due to a random non-response, then the remaining

(n − r) units can be treated as a simple random sample from U . We assume 0 ≤ r ≤ (n − 2), as

we are interested in the problem of an unbiased estimation of the finite population variance. Singh

and Joarder (1998) have given the distribution of r as

P (r) =
n− r

nq + 2p

(
n− 2

r

)
prqn−2−r, (2.1)

where p is the probability of non-response, q = 1−p and
(
n−2
r

)
represents the total number of ways

to obtain r non-responses out of a possible (n − 2). We write e0 = s∗2y /S
2
y − 1, e1 = x̄∗/X̄ − 1 =

(u∗ − 1), e2 = s∗2x /S
2
x − 1 = (v∗ − 1), e3 = x̄/X̄ − 1 = (u − 1), and e4 = s2x/S

2
x − 1 = (v − 1);

where x̄∗ = (n − r)−1∑n−r
i=1 xi, ȳ

∗ = (n − r)−1∑n−r
i=1 yi, s

∗2
y = (n − r − 1)−1∑n−r

i=1 (yi − ȳ∗)2 and

s∗2x = (n− r − 1)−1∑n−r
i=1 (xi − x̄∗)2.

Then, under model (2.1) E(e20) = θ∗(λ40 − 1), E(e21) = θ∗C2
x, E(e22) = θ∗(λ04 − 1), E(e23) = θC2

x,

E(e24) = θ(λ04 − 1), E(e0e1) = θ∗λ21Cx, E(e0e2) = θ∗(λ22 − 1), E(e0e3) = θλ21Cx, E(e0e4) =

θ(λ22 − 1), E(e1e2) = θ∗λ03Cx, E(e1e3) = θC2
x, E(e1e4) = θλ03Cx, E(e2e3) = θλ03Cx, E(e2e4) =

θ(λ04 − 1) and E(e3e4) = θλ03Cx, where θ
∗ = (1/(nq + 2p)− 1/N). Note that if p = 0 (there is no

non-response), the above expected values agree with the usual results.

3. Suggested Strategies

Strategy I. When random non-response is present for r units on both y and x and X̄ and S2
x are

known, we define a family of estimators of S2
y as

d3 = s∗2y t(u
∗, v∗), (3.1)

where u∗ = x̄∗/X̄, v∗ = s∗2x /S
2
x and t(u∗, v∗) is a function of (u∗, v∗) such that t(1, 1) = 1 and the

following conditions are satisfied:

(1) Regardless of the sample that is chosen, (u∗, v∗) assumes values in a bounded, closed convex

subset, D, of the two-dimensional real space containing the point (1, 1). (2) In D, the function

t(u∗, v∗) is continuous and bounded. (3) The first and second partial derivatives of t(u∗, v∗) exist

and are continuous and bounded in D. Expanding t(u∗, v∗) about the point (1, 1) in a second-order

Taylor’s series, we have that E(d3) = S2
y +O(n−1); thus the bias of d3 is of the order of n−1. The

MSE of d3 up to terms of order n−1 is

MSE(d3) = θ∗S4
y

[
(λ40 − 1) + C2

xt
2
1(1, 1) + (λ04 − 1)t22(1, 1)

+2λ03Cxt1(1, 1)t2(1, 1) + 2λ21Cxt1(1, 1) + 2(λ22 − 1)t2(1, 1)] , (3.2)

where t1(1, 1) and t2(1, 1) denote the first order partial derivatives of t(u∗, v∗). The MSE of d3 in

(3.2) is minimized for

t1(1, 1) = A and t2(1, 1) = B, (3.3)
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where A and B are given in (1.7). Substitution of (3.3) into (3.2) yields the minimum MSE of d3 as

min.MSE(d3) = θ∗S4
y [λ40 − 1−D], (3.4)

where D is defined in (1.9). Thus we have the following theorem.

Theorem 3.1. Up to terms of order n−1

MSE(d3) ≥ θ∗S4
y [λ40 − 1−D]

with equality holding if t1(1, 1) = A and t2(1, 1) = B.

Any parametric function t(u∗, v∗) satisfying conditions (1) and (2) can define an estimator of S2
y .

Therefore in addition to the Singh and Joarder (1998) estimator of S2
y

d3(0) = s∗2y

( S2
x

s∗2x

)
(3.5)

the estimators

d3(1) = s∗2y u
∗αv∗β

d3(2) = s∗2y
1 + α(u∗ − 1)

1 + β(v∗ − 1)

d3(3) = s∗2y {1 + α(u∗ − 1) + β(v∗ − 1)}
d3(4) = s∗2y {1− α(u∗ − 1)− β(v∗ − 1)}

d3(5) = s∗2y {2− u∗αv∗β}

d3(6) =
s∗2y

1 + γ(u∗αv∗β − 1)

d3(7) = s∗2y exp{α(u∗ − 1) + β(v∗ − 1)}

d3(8) = s∗2y {αu∗ + (1− α)v∗β} (3.6)

and so on are particular members of the proposed family d3, where α, β, γ are constants. It is easily

seen that the optimum values of the parameters α and β in the above estimators are given by A

and B in (1.7). The minimum MSE’s of d3(j); j = 1 to 8 are equal to (3.4). Note also that it can

be shown that if we consider a wider family of estimators d4 = T (s∗2y , u
∗, v∗), where the function

T (•) satisfies T (S2
y , 1, 1) = S2

y and T1(S
2
y , 1, 1) = 1 with T1(•) denoting the first partial derivative of

T (•) with respect to s∗2y , the minimum MSE of d4 is equal to (3.4); subsequently, it is not smaller

than that of d3. The difference type estimator

d4(1) = s∗2y + α(u∗ − 1) + β(v∗ − 1)

is a member of the class d4 but not of d3. Putting t1(1, 1) = 0 and t2(1, 1) = −1 in (3.2), we obtain

the MSE of the Singh and Joarder (1998) estimator d3(0) to the first order of approximation as

MSE(d3(0)) = θ∗S4
y(λ40 + λ04 − 2λ22). (3.7)

To determine an estimator of the minimum MSE of d3, we make use of the following lemma given

in Singh and Joarder (1998) and Singh et al. (2000).
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Lemma 3.1. A maximum likelihood estimator of the probability of non-response p is given by

p̂ =
(n− 1 + r)−

√
(n− 1 + r)2 − 4rn(n− 3)/(n− 2)

2(n− 3)
. (3.8)

If r = 0 then p̂ = 0, and if r = (n − 2) then p̂ = 1; thus p̂ is an admissible estimator of response

probability p.

Theorem 3.2. An estimator of the minimum MSE(d3) is given by

min.M̂SE(d3) = θ̂∗s∗4y

[
λ̂∗
40 − 1− D̂

]
,

where

λ̂∗
ls =

µ̂∗
ls

(µ̂∗
20)

l
2 (µ̂∗

02)
s
2

, (3.9)

µ̂∗
ls = (n− r − 1)−1

n−r∑
i=1

(yi − ȳ∗)l(xi − x̄∗)s, (l, s) = 0, 1, 2, 3, 4, (3.10)

D̂ = λ̂∗2
21 +

(λ̂∗
21λ̂

∗
03 − λ̂∗

22 + 1)2

λ̂∗
04 − λ̂∗2

03 − 1
and θ̂∗ =

(
1

nq̂ + 2p̂
− 1

N

)
.

Bias in the estimator

To obtain the bias of d3, we assume that the third partial derivatives of t(u∗, v∗) also exist and are

continuous and bounded. Expanding t(u∗, v∗) about (1, 1) to third order and taking expectations,

we obtain up to terms of order n−1

B(d3) = θ∗
(
S2
y

2

)[
2λ21Cxt1(1, 1) + 2(λ22 − 1)t2(1, 1) + C2

xt11(1, 1) + 2λ03Cxt12(1, 1)

+ (λ04 − 1)t22(1, 1)] , (3.11)

where tij(1, 1), (i, j) = 1, 2 denote the second order partial derivatives of t(u∗, v∗). The bias and

MSE of an estimator that belong to the proposed family d3 can be easily obtained from (3.11) and

(3.2).

Theorem 3.3. If t11(1, 1) = 2t21(1, 1), t12(1, 1) = 2t1(1, 1)t2(1, 1) and t22(1, 1) = 2t22(1, 1), then the

subsequent estimator that belongs to the family d3 would be an asymptotically optimum unbiased

estimator(AOUE) with approximate variance formula given by (3.4).

The results of Theorem 3.3 hold true for the estimator d3(4). The bias of d3(4) is zero for optimum

values of α and β.

Estimators with estimated optimum parameters

In practice, optimum values A and B of t1(1, 1) and t2(1, 1) are rarely known. Consistent estimators

of t1(1, 1) and t2(1, 1) are given by

t̂1(1, 1) = Â and t̂2(1, 1) = B̂, (3.12)
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where Â and B̂ are determined by replacing λls in (1.5) by λ̂∗
ls given in (3.9), which is obtained

using µ̂∗
ls in (3.10). To develop a family of estimators d∗3 and associated MSE’s analogous to the

class d3 when optimum values are unknown, the regularity conditions for d3 and (3.3) suggest

that a function t(u∗, v∗) is required such that t(1, 1) = 1, t1(1, 1) = ∂t(•)/∂u∗|(1,1) = A, and

t2(1, 1) = ∂t(•)/∂v∗|(1,1) = B, which indicates that the function t(•) will contain not only u∗ and

v∗ but A and B as well. Thus a function t∗(u∗, v∗, A,B) is needed such that t∗(1, 1, A,B) = 1,

t1(1, 1, A,B) = ∂t∗(•)/∂u∗|(1,1,A,B) = A, and t2(1, 1) = ∂t∗(•)/∂v∗|(1,1,A,B) = B. Since A and B

are not known, we may take t∗∗(u∗, v∗, Â, B̂) = t∗(u∗, v∗, Â, B̂). Now

t∗∗(Q) = 1, t∗∗1 (Q) =
∂t∗∗(•)
∂u∗

∣∣∣∣
Q

= A, t∗∗2 (Q) =
∂t∗∗(•)
∂v∗

∣∣∣∣
Q

= B,

where Q = (1, 1, A,B); thus we may consider

d∗3 = s∗2y t
∗∗
(
u∗, v∗, Â, B̂

)
(3.13)

as an estimator of S2
y . Performing a Taylor series expansion of t∗∗(u∗, v∗, Â, B̂) about Q yields

d∗3 = s∗2y

[
1 + (u∗ − 1)A+ (v∗ − 1)B +

(
Â−A

)
t∗∗3 (Q) +

(
B̂ −B

)
t∗∗4 (Q) + · · ·

]
, (3.14)

where t∗∗3 (Q) = ∂t∗∗(•)/∂Â|Q = 0 and t∗∗4 (Q) = ∂t∗∗(•)/∂B̂|Q = 0 are the first order partial

derivatives of t∗∗(•) with respect to Â and B̂ at Q = (1, 1, A,B) respectively. Putting s∗2y =

S2
y(1 + e0), e1 = (u∗ − 1), e2 = (v∗ − 1) in (3.14) we have

d∗3 − S2
y = S2

y

[
e0 + e1A+ e2B + e0e1A+ e0e2B +

(
Â−A

)
t∗∗3 (Q) +

(
B̂ −B

)
t∗∗4 (Q) + · · ·

]
. (3.15)

Squaring both sides of (3.15) and taking expectation, the first degree approximation of the MSE of

d∗3 is equal to the minimum MSE of d3 in (3.4) if t∗∗3 (Q) = 0, t∗∗4 (Q) = 0. Therefore, replacing α

and β by Â and B̂ in the expression for d3(j), j = 1, 2, . . . , 8 yields a set of estimators, d∗3(j), of S
2
y

that are members of the proposed family d∗3 and that attain the same minimum MSE as given in

(3.4).

Strategy II. Consider the situation where information on x is available for all sampled units but

information on y could not be obtained for r units. If X̄ and S2
x are known, we define a family of

estimators for S2
y as

d5 = s∗2y h(u, v), (3.16)

where u = x̄/X̄, v = s2x/S
2
x and h(u, v) is a function that satisfies certain conditions similar to those

for t in d3, and is such that h(1, 1) = 1. To the first degree of approximation, the bias and MSE of

d5 are given by

B(d5) = B(d2) (3.17)

and

MSE(d5) = MSE(d2) + (θ∗ − θ)(λ40 − 1)S4
y , (3.18)

where B(d2) and MSE(d2) are given in (1.3) and (1.4). The bias and MSE of an estimator that
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belongs to the family of estimators d5 can be easily obtained from (3.17) and (3.18). The MSE(d5)

is minimum when

h1(1, 1) = A and h2(1, 1) = B, (3.19)

where A and B are defined in (1.7). Thus the minimum MSE of d5 is given by

min.MSE(d5) = min.MSE(d2) + (θ∗ − θ)(λ40 − 1)S4
y , (3.20)

where min.MSE(d2) is given in (1.8). Thus, we have the following theorem:

Theorem 3.4. Up to terms of order n−1,

MSE(d5) ≥ min.MSE(d2) + (θ∗ − θ)(λ40 − 1)S4
y

with the equality holding if h1(1, 1) = A and h2(1, 1) = B.

Any parametric function h(u, v) satisfying the regularity conditions can generate an asymptotically

acceptable estimator. Estimators d5(j) of S
2
y that are particular members of the proposed family d5

can be derived that are identical to d3(j) in (3.6) except that u and v would be used instead of u∗

and v∗. It is also easy to show that the d5(j) will have the same MSE given in (3.20).

Singh and Joarder (1998) suggested an estimator of S2
y as

d5(0) = s∗2y
S2
x

s2x
, (3.21)

which is a particular case of the proposed family d5. The MSE of d5(0) is obtained by setting

h1(1, 1) = 0 and h2(1, 1) = −1 in (3.18) yielding

MSE(d5(0)) = S4
y [θ(λ40 + λ04 − 2λ22) + (θ∗ − θ)(λ40 − 1)] . (3.22)

Note that the family of estimators in (3.16) does not include simple difference-type estimators such

as

d6(1) = s∗2y − w1

(
x̄− X̄

)
− w2

(
s2x − S2

x

)
(3.23)

and

d6(2) = s∗2y − ϕ1

(
s2x − S2

x

)
− ϕ2

(
Ĉ2

x − C2
x

)
, (3.24)

where wi and ϕi, i = 1, 2 are constants and Ĉ2
x = s2x/x̄

2. However, (3.23) and (3.24) are members

of a wider family of estimators defined by

d6 = H
(
s∗2y , u, v

)
, (3.25)

where H(•) is a function of (s∗2y , u, v) such that

H
(
S2
y , 1, 1

)
= S2

y and H1

(
S2
y , 1, 1

)
=
∂H(•)
∂s∗2y

∣∣∣∣
(S2

y,1,1)
= 1. (3.26)

The minimum asymptotic MSE of d6 in (3.25) is equal to (3.20). Thus, for optimum values of
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constants in (3.23) and (3.24), equation (3.20) also reflects the minimum MSE for the estimators

d6(i), i = 1, 2.

Estimators with estimated optimum parameters

When the optimum values A and B in (1.7) are unknown, they may be replaced by Â1 and B̂1, where

Â1 and B̂1 are determined by substituting λ̂∗
2s in (3.9) for λ2s and λ̂0s for λ0s, where λ̂0s = µ̂0s/µ̂

s/2
02

with µ̂0s = (n− 1)−1∑n
i=1(xi − x̄)s. This yields the estimators

d∗5 = s∗2y h
(
u, v, Â1, B̂1

)
, (3.27)

where h∗(u, v, Â1, B̂1) is a function of (u, v, Â1, B̂1) such that h∗(Q) = 1, h∗
1(Q) = ∂h∗(•)/∂u|Q = A,

h∗
2(Q) = ∂h∗(•)/∂v|Q = B, h∗

3(Q) = ∂h∗(•)/∂Â1|Q = 0, and h∗
4(Q) = ∂h∗(•)/∂B̂1|Q = 0 for

Q = (1, 1, A,B). Proceeding similarly to d∗3 it can be shown to the first degree of approximation

that the MSE of d∗5 is equivalent to the minimum MSE of d5 given by (3.20). Estimators d∗5(j) of

S2
y that are members of the proposed family d∗5 can be computed using estimated optimum values

by simply replacing α and β in d5(j) by Â1 and B̂1. Note that it can easily be verified to the first

order of approximation that the estimators d∗5(j) obtain the same minimum MSE given by (3.20).

Theorem 3.5. An estimator of the min.MSE(d5) (or MSE(d∗5)) is given by

min.M̂SE(d5) = s∗4y

θ̂∗ (λ̂∗
40 − 1

)
− θ

λ̂∗2
21 +

(
λ̂∗
21λ̂03 − λ̂∗

22 + 1
)2

λ̂04 − λ̂2
03 − 1


 . (3.28)

Strategy III. Consider a nonresponse situation identical to strategy II. However, the population

parameters X̄ and S2
x are unknown. Here, we suggest a class of estimators of S2

y as

d7 = s∗2y f(w, z), (3.29)

where w = x̄∗/x̄, z = s∗2x /s
2
x and f(w, z) is a function of (w, z) that satisfies certain conditions

similar to t for d3 in (3.1) and is also such that f(1, 1) = 1. To the first order of approximation,

the bias and MSE of d7 are given by

B(d7) = (θ∗ − θ)
S2
y

2

[
C2

xf11(1, 1) + (λ04 − 1)f22(1, 1) + 2λ03Cxf12(1, 1) + 2λ21Cxf1(1, 1)

+2(λ22 − 1)f2(1, 1)] (3.30)

and

MSE(d7) = S4
y

[
θ∗(λ04 − 1) + (θ∗ − θ)

{
C2

xf
2
1 (1, 1) + (λ04 − 1)f2

2 (1, 1) + 2λ03Cxf1(1, 1)f2(1, 1)

+2λ21Cxf1(1, 1) + 2(λ22 − 1)f2(1, 1)}] , (3.31)

where fi(1, 1), i = 1, 2 and fij(1, 1), (i, j) = 1, 2; denote the first and second partial derivatives of

f(w, z). The MSE(d7) is minimum when

f1(1, 1) = A and f2(1, 1) = B. (3.32)

Substitution of (3.32) in (3.31) yields the minimum MSE of d7 as

min.MSE(d7) = min.MSE(d3) + θS4
yD, (3.33)
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whereD and min.MSE(d3) are given in (1.9) and (3.4). It is to be noted that the family of estimators

d7 in (3.29) is very large. In particular, estimators d7(j) of S2
y that are members of the family d7

can be obtained by simply replacing u∗ and v∗ in d3(j) in (3.6) by w and z. To the first order of

approximation, the minimum MSE of d7(j) is given by (3.33). Thus, we have the following theorems.

Theorem 3.6. Up to terms of order n−1,

MSE(d7) ≥ S4
y [θ

∗(λ40 − 1)− (θ∗ − θ)D]

with equality holding if f1(1, 1) = A and f2(1, 1) = B.

Theorem 3.7. If f11(1, 1) = 2f2
1 (1, 1), f12(1, 1) = 2f1(1, 1)f2(1, 1) and f22(1, 1) = 2f2

2 (1, 1), then

an estimator of the family d7 would be an asymptotically optimum unbiased estimator(AOUE) with

approximate variance given by (3.33).

Theorem 3.8. An estimator of min.MSE(d7) is given by

min.M̂SE(d7) = s∗4y

θ̂∗ (λ̂∗
40 − 1

)
−
(
θ̂∗ − θ

)λ̂∗2
21 +

(
λ̂∗
21λ̂03 − λ̂∗

22 + 1
)2

λ̂04 − λ̂2
03 − 1


 .

Remark 3.1. It is to be noted that the bias and MSE of an estimator belonging to the family

d7 can be easily obtained from (3.30) and (3.31) respectively. To illustrate this, we consider an

estimator

d7(0) = s∗2y
s2x
s∗2x

= s∗2y z
−1 (3.34)

of S2
y suggested by Singh and Joarder (1998, p.248). Putting f1(1, 1) = 0, f2(1, 1) = −1, f11(1, 1) =

f12(1, 1) = 0, f22(1, 1) = 2 in (3.30) and (3.31), we obtain the approximate bias and MSE of d7(0)
up to terms of order O(n−1) as

B(d7(0)) = (θ∗ − θ)S2
y(λ04 − λ22) (3.35)

and

MSE(d7(0)) = S2
y [θ

∗(λ40 − 1) + (θ∗ − θ)(λ04 − 2λ22 + 1)] . (3.36)

The expressions for the bias and MSE of d7(0) do not agree with those given in Singh and Joarder

(1998) in Equation (3.20) and Equation (3.21), p.248. However, these authors incorrectly evaluated

E(δη) as θ(λ22 − 1) instead of θ(λ04 − 1) (see Singh and Joarder, 1998, p.243).

Remark 3.2. If we consider a wider family of estimators d8=F (s∗2y , w, z) of S
2
y , where F (s2y, 1, 1)=

S2
y and F1(S

2
y , 1, 1) = 1 is the first partial derivative of F (•) with respect to s∗2y about the point

(S2
y , 1, 1), the minimum MSE of d8 is identical to that of d7. The difference type estimator d8(1)=

s∗2y + α(w − 1) + β(z − 1) is a member of the family represented by d8, but not of d7.

Estimators with estimated optimum parameters

When A and B are unknown, they may be replaced by Â2 and B̂2, where Â2 and B̂2 are determined
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by substituting λ̂∗
2s in (3.9) for λ2s in (1.5), λ̂0s = µ̂0s/µ̂

s/2
02 with µ̂0s = (n − 1)−1∑n

i=1(xi − x̄)s

for λ0s and Ĉx = sx/x̄ for Cx. If we define a family of estimators (based on estimated optimum

values) for S2
y as

d∗7 = s∗2y f
∗
(
w, z, Â2, B̂2

)
(3.37)

then following an approach identical to that used to derive d∗5, we can establish a set of estimators

d∗7(j) belonging to the family d∗7 with MSE properties analogous to those for d∗5(j).

4. A Revisit to Singh and Joarder’s (1998) Estimator

If information on x is available for all n units, Singh and Joarder (1998) suggested a family of

estimators of S2
y as

d9 = s∗2y
S2
x

s2x
+ α

(
s∗2x
S2
x

− 1

)
, (4.1)

where α is a suitably chosen constant such that the MSE of d9 is minimum. To obtain the bias and

MSE of d9, we express (4.1) as

d9 − S2
y = S2

y

{
e0 − e4 − e0e4 + e24 + · · ·

}
+ αe2. (4.2)

Taking the expectation of (4.2), we obtain a first order approximation of bias as

B(d9) = θS2
y(λ04 − λ22). (4.3)

This is same result obtained by Singh and Joarder (1998). To develop an expression for the MSE,

we square both sides of (4.2), neglecting terms with e’s having power greater than two. Then taking

the expectation of both sides and using the results given in Section 2, the MSE of d9 to terms of

order n−1, is

MSE(d9) = S2
y [θ(λ40 + λ04 − λ22) + (θ∗ − θ)(λ04 − 1)]

+α2θ∗(λ04 − 1) + 2αS2
y [θ

∗(λ22 − 1)− θ(λ04 − 1)]
]

(4.4)

which is minimized for

α = −
S2
y [θ

∗(λ22 − 1)− θ(λ04 − 1)]

θ∗(λ04 − 1)
. (4.5)

Thus the resulting minimum MSE of d9 is given by

min.MSE(d9) = MSE(d5(0))−
S2
y [θ

∗(λ22 − 1)− θ(λ04 − 1)]2

θ∗(λ04 − 1)
, (4.6)

where MSE(d5(0)) is given in (3.22).

Theorem 4.1. An estimator of the min.MSE(d9) is given by

min.MSE(d9) = M̂SE(d5(0))−
s∗4y

{
θ̂∗
(
λ̂∗
22 − 1

)
− θ

(
λ̂04 − 1

)}2

θ̂∗
(
λ̂04 − 1

) , (4.7)

where

M̂SE(d5(0)) = s∗4y

[
θ
(
λ̂∗
40 + λ̂04 − 2λ̂∗

22

)
+
(
θ̂∗ − θ

)(
λ̂04 − 1

)]
.
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Remark 4.1. Note that the expressions in (4.4), (4.5), (4.6) and (4.7) are correct while the expres-

sions obtained by Singh and Joarder (1998, equations (3.12), (3.13), (3.14) and (3.15); pp. 246–247)

are incorrect.

Remark 4.2. If the optimum value of α is not known, it can be replaced with a consistent estimator

α̂ which is determined by replacing S2
y , θ

∗, λ22 and λ04 in (4.5) by s∗2y , θ̂∗, λ̂22 and λ̂04. Substituting

α̂ into (4.1) yields the estimator d∗9 for S2
y . Note that it can be easily shown to a first order

approximation that

MSE(d∗9) = min.M̂SE(d9). (4.8)

4.1. A general family of estimators

A generalized version of d9 is proposed as

d10 = s∗2y
S2
x

s2x
g (u∗, v∗) = s∗2y v

−1g(u∗, v∗), (4.9)

where g(u∗, v∗) is a function of (u∗, v∗) that satisfies certain conditions similar to those for t in d3
and is such that g(1, 1) = 1. To the first degree of approximation, the bias and MSE of d10 are

given by

B(d10) = B(d5(0)) +
S2
y

2

[
θ∗
{
C2

xg11(1, 1) + (λ04 − 1)g22(1, 1) + 2λ03Cxg12(1, 1) + 2λ21Cxg1(1, 1)

+2(λ22 − 1)g2(1, 1)} − 2θ {λ03Cxg1(1, 1) + (λ04 − 1)g2(1, 1)}] (4.10)

and

MSE(d10) = MSE(d5(0)) + S4
y

[
θ∗
{
C2

xg
2
1(1, 1) + (λ04 − 1)g22(1, 1) + 2λ03Cxg1(1, 1)g2(1, 1)

+2λ21Cxg1(1, 1) + 2(λ22 − 1)g2(1, 1)}−2θ{λ03Cxg1(1, 1) + (λ04−1)g2(1, 1)}] . (4.11)

The MSE(d10) is minimised for

g1(1, 1) = A and g2(1, 1) =
θ

θ∗
+B. (4.12)

Thus the resulting (minimum) MSE of d10 is given by

min.MSE(d10) = min.MSE(d3) +
θ(θ∗ − θ)

θ∗
S4
y(λ04 − 1). (4.13)

Thus we have the following theorems.

Theorem 4.2. Up to terms of order n−1,

MSE(d10) ≥ min.MSE(d3) +
θ(θ∗ − θ)

θ∗
S4
y(λ04 − 1). (4.14)

Theorem 4.3. An estimator of the min.MSE(d10) is given by

min.M̂SE(d10) = min.M̂SE(d3) +
θ
(
θ̂∗ − θ

)
θ̂∗

s∗4y

(
λ̂04 − 1

)
, (4.15)
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where min.M̂SE(d3) is given in Theorem 3.2.

Some particular members of the family of estimators d10 are d10(1) = s∗2y v
−1(u)α(v)β , d10(2) =

s∗2y v
−1{1+α(u− 1)}/{1+β(v− 1)}, d10(3) = s∗2y v

−1{1+α(u− 1)+β(v− 1)}, d10(4) = s∗2y v
−1{1−

α(u− 1)− β(v− 1)}−1, d10(5) = s∗2y v
−1{2− (u)α(v)β}, d10(6) = s∗2y v

−1/{1+ γ(uαvβ − 1)}, d10(7) =
s∗2y v

−1 exp{α(u− 1) + β(v − 1)}, d10(8) = s∗2y v
−1v∗α, and so on.

Remark 4.3. A family wider than (4.9) is defined by

d11 = G
[
s∗2y , v, u

∗, v∗
]
, (4.16)

where G(•) is a function of (s∗2y , v, u
∗, v∗) such that G(S2

y , 1, 1, 1) = S2
y , G1(S

2
y , 1, 1, 1) = 1,

G2(S
2
y , 1, 1, 1) = −1 and G22(S

2
y , 1, 1, 1) = 2, where G1(•), G2(•) and G22(•) are the first and

the second partial derivatives of G(s∗2y , v, u
∗, v∗). The MSE of d11 is the same as that of d10 given

by (4.13). Note that the estimator d9 is a special member of d11 but not of d10.

Remark 4.4. Let

ĝ1(1, 1) = Â3 = Â2 and ĝ2(1, 1) = B̂3 =
θ

θ̂∗
+ B̂2 (4.17)

be the consistent estimators of the optimum values of g1(1, 1) and g2(1, 1) in (4.12). Then, we define

a family of estimators (based on estimated optimum values) of S2
y as

d∗10 = s∗2y v
−1g∗

(
u∗, v∗, Â3, B̂3

)
, (4.18)

where g∗(u∗, v∗, Â3, B̂3) is a function of (u∗, v∗, Â3, B̂3) such that g∗(S) = 1, g∗1(S) = ∂g∗(•)/∂u∗|S =

A, g∗2(S) = ∂g∗(•)/∂v∗|S = B + θ/θ∗, g∗3(S) = ∂g∗(•)/∂Â3|S = 0, and g∗4(S) = ∂g∗(•)/∂B̂3|S = 0

for S = (1, 1, A3, B3). It can be easily proved for a first order approximation that

MSE(d∗10) = min.MSE(d10). (4.19)

Estimators d∗10(j) of S
2
y can be obtained by replacing α, β, γ, u and v with Â3, B̂3, γ̂, u

∗ and v∗. It

can be easily shown that the MSE of d∗10(j) is equal to that of d∗10

Remark 4.5. One may also suggest the following families of estimators of S2
y as

d11 = s∗2y D (u∗, v∗, u, v) (4.20)

and

d12 = P
(
s∗2y , u

∗, v∗, u, v
)
, (4.21)

where D(•) and P (•) are the functions of (u∗, v∗, u, v) and (s∗2y , u
∗, v∗, u, v) such that D(1, 1, 1, 1) =

1, P (S2
y , 1, 1, 1, 1) = S2

y , P1(S
2
y , 1, 1, 1, 1) = 1 andD(•) and P (•) satisfy certain regularity conditions.

It can easily be shown for a first order of approximation that

min.MSE(d11) = min.MSE(d12) = min.MSE(d3), (4.22)

where min.MSE(d3) is given by (3.4).
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5. Efficiency Comparison

It is well known that

V
(
s∗2y
)
= θ∗S4

y(λ40 − 1). (5.1)

From (3.4), (3.7) and (5.1) we have

V
(
s∗2y
)
−min.MSE(d3) = θ∗S4

y

[
λ2
21 +

(λ21λ03 − λ22 + 1)2

λ04 − λ2
03 − 1

]
> 0 (5.2)

and

MSE(d3(0))−min.MSE(d3) = θ∗S4
y

[
(λ04 − λ22)

2

λ04 − 1
+ Θ

]
> 0, (5.3)

where Θ = {(λ04 − 1)λ21 − (λ22 − 1)λ03}2/(λ04 − λ2
03 − 1). It follows from (5.2) and (5.3) that the

proposed family d3 or d∗3 is more efficient than the conditional unbiased estimator s∗2y and the Singh

and Joarder (1998) estimator d3(0). Similarly, from (3.20), (3.22) and (5.1) we can show that

V
(
s∗2y
)
−min.MSE(d3) =

θ

θ∗
[
V
(
s∗2y
)
−min.MSE(d3)

]
> 0, (5.4)

MSE
(
d5(0)

)
−min.MSE(d5) =

θ

θ∗
[
MSE

(
d3(1)

)
−min.MSE(d3)

]
> 0. (5.5)

We note from (5.4) and (5.5) that the proposed family d5 (or d∗5 ) is more efficient than s∗2y and

d5(0), and from (3.33), (3.36) and (5.1) that

V
(
s∗2y
)
−min.MSE(d7) =

θ − θ∗

θ∗
[
V
(
s∗2y
)
−min.MSE(d3)

]
> 0 (5.6)

and

MSE
(
d7(0)

)
−min.MSE(d7) =

θ − θ∗

θ∗
[
MSE

(
d3(1)

)
−min.MSE(d3)

]
> 0, (5.7)

which shows that the suggested family d7 is better than s∗2y and d7(0). Finally, using (3.4), (3.7),

(3.20), (3.22), (3.33), (4.6) and (4.15) we have

min.MSE (d5)−min.MSE(d3) =
θ − θ∗

θ∗
[
MSE(d3(1))−min.MSE(d3)

]
> 0, (5.8)

min.MSE (d7)−min.MSE(d3) =
θ − θ∗

θ∗
[
V
(
s∗2y
)
−min.MSE(d3)

]
> 0, (5.9)

min.MSE (d10)−min.MSE(d3) =
(θ − θ∗)θ∗

θ∗
S4
y(λ04 − 1) > 0, (5.10)

min.MSE (d9)−min.MSE(d10) =
θ∗

λ04 − 1
S4
yΘ > 0, (5.11)

MSE
(
d5(9)

)
−min.MSE(d9) =

S4
y

(λ04 − 1)θ∗
{θ∗(λ22 − 1)− θ(λ04 − 1)}2 > 0. (5.12)

From (5.8) to (5.12), we have the following inequalities:

min.MSE(d3) ≤ min.MSE(d5), (5.13)

min.MSE(d3) ≤ min.MSE(d7), (5.14)

min.MSE(d3) ≤ min.MSE(d10) ≤ min.MSE(d9) ≤ min.MSE(d5(6)), (5.15)

which implies that the proposed family d3 (or d∗3) is the best among all the estimators discussed in

this paper.
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6. A Numerical Illustration

Suppose that a bank selected a simple random sample of twenty states without replacement from

the USA during 1997 and collected information (in thousands) on real (y) and nonreal estate farm

loans (x). The selected sates are CA, CT, FL, IL, ME,MS, MO, NE, NJ, NM, ND, OK, SC, TN, TX,

UT, VA, WA, WV and WI. For detail of the data set, please see population-1 on page 1111 in Singh

(2003). However, assume the information on the real estate farm loans was not available for four

states ME, ND, TX and VA. Let us apply the ratio type estimator ν̂ = s∗2y · s2x/s∗2x for estimating

the finite population variance of the real estate farm loans in the United States and construct a 75%

confidence interval. From the Table 3.1 for n = 20 and r = 4 we have p̂ = 0.233555 and q̂ = 0.766445.

From the responding units in the sample we have x̄n−r = 1123.62, ȳn−r = 735.77, µ̂∗
20 = s∗2y =

432778.2, µ̂∗
02 = s∗2x = 1622949.4, µ̂∗

22 = 8.270667 × 1011 and µ̂∗
40 = 3.8922 × 1011, while from the

complete information on the auxiliary variable, x̄ = 1148.986, µ̂02 = s2x = 1690181.84, µ̂04 = s2x =

7.46411×1012, λ̂04 = µ̂04/µ̂
2
02 = 2.6128, λ̂∗

04 = µ̂∗
40/µ̂

∗2
20 = 2.0781, and λ̂22 = µ̂∗

22/(µ̂
∗
20µ̂

∗
02) = 1.1775.

Thus, an estimate of the finite population variance of the real estate farm loans is given by

ν̂ = s∗2y
s2x
s∗2x

= 450706.50

and an estimate of the MSE(ν̂) is given by

M̂SE(ν̂) =

[{
1

nq̂ + 2p̂
− 1

N

}(
λ̂∗
40 − 1

)
+

{
1

nq̂ + 2p̂
− 1

n

}(
λ̂04 − 2λ̂∗

22 + 1
)]
s∗4y = 3.4938× 1010.

The (1− α)100% confidence interval for the finite population variance is given by

ν̂ ± t2α
2
,df=n−r−2

√
M̂SE(ν̂).

Therefore, the 75% confidence interval of the finite population variance of the real estate farm loans

is given by:

ν̂ ± t20.125,df=20−4−2

√
M̂SE(ν̂) or M̂SE[181545.88, 719867.11].

Note that if we divide the original dataset by 100, then the 75% CI estimate for the finite population

variance will be given by [18.15, 71.98].
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