References
- Astill, C.J., Noisseir, S.B. and Shinozuka, M. (1972), "Impact loading on structures with random properties", J. Struct. Mech., 1, 63-67. https://doi.org/10.1080/03601217208905333
- Barbato, M. and Conte, J.P. (2007), "Simplified probabilistic dynamic response analysis of structural systems", Proceedings of the ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering, Rethymno, Crete, Greece.
- Benaroya, H. and Rehak, M. (1988), "Finite element methods in probabilistic structural analysis: a selective review", Appl. Mech. Rev., 41, 201-213. https://doi.org/10.1115/1.3151892
- Benfratello, S. and Muscolino, G.A. (1998), "A perturbation approach for the response of dynamically modified structural systems", Comput. Struct., 68, 101-112. https://doi.org/10.1016/S0045-7949(98)00026-1
- Bucher, C.G. and Bourgund, U. (1990), "A fast and efficient response surface approach for structural reliability problems", Struct. Saf., 7, 57-66. https://doi.org/10.1016/0167-4730(90)90012-E
- Chakraborty, S. and Dey, S.S. (1998), "A stochastic finite element dynamic analysis of structures with uncertain parameters", Int. J. Mech. Sci., 40, 1071-1087. https://doi.org/10.1016/S0020-7403(98)00006-X
- Chen, J.B. and Li, J. (2005), "Dynamic response and reliability analysis of non-linear stochastic structures", Prob. Eng. Mech., 20, 33-44. https://doi.org/10.1016/j.probengmech.2004.05.006
- Chen, J.B. and Li, J. (2009), "A note on the principle of preservation of probability and probability density evolution equation", Prob. Eng. Mech., 24, 51-59. https://doi.org/10.1016/j.probengmech.2008.01.004
- Choi, C.K. and Noh, H.C. (2000), "Weighted integral SFEM including higher order terms", J. Eng. Mech., 126, 859-866. https://doi.org/10.1061/(ASCE)0733-9399(2000)126:8(859)
- Clough, R.W. and Penzien, J. (1993), Dynamics of Structures, McGraw-Hill, New York.
- Contreras, H. (1980), "The stochastic finite-element methods", Comp. Struct., 12, 341-348. https://doi.org/10.1016/0045-7949(80)90031-0
- Davenport, A.G. and Larose, G.L. (1989), "The structural damping of long span bridges: an interpretation of observation", Proceedings of the Proceedings of the Canada-Japan Workshop on Bridge Aerodynamics, Ottawa, Canada.
- Dostupov, B.G. and Pugachev, V.S. (1957), "The equation for the integral of a system of ordinary differential equations containing random parameters", Automatika i Telemekhanika, 18, 620-630.
- Gao, W., Chen, J.J. and Ma, H.B. (2003), "Dynamic response analysis of closed loop control system for intelligent truss structures based on probability", Struct. Eng. Mech., 15, 239-248. https://doi.org/10.12989/sem.2003.15.2.239
- Gao, W., Chen, J.J., Ma, J. and Liang, Z.T. (2004), "Dynamic response analysis of stochastic frame structures under nonstationary random excitation", AIAA. J., 42, 1818-1822. https://doi.org/10.2514/1.7523
- Gao, W., Chen, J., Cui, M. and Cheng, Y. (2005), "Dynamic response analysis of linear stochastic truss structures under stationary random excitation", J. Sound Vib., 28, 311-321.
- Gao, W., Zhang, N. and Ji, J.C. (2009), "A new method for random vibration analysis of stochastic truss structures", Finite Elem. Anal. Des., 45, 190-199. https://doi.org/10.1016/j.finel.2008.09.004
- Ghanem, R.G. and Spanos, P.D. (1991), Stochastic Finite Elements: a Spectral Approach, Springer-Verlag, New York.
- Iwan, W.D. and Jensen, H. (1993), "On the dynamic response of continuous systems including model uncertainty", J. Appl. Mech., 60, 484-490. https://doi.org/10.1115/1.2900819
- Jensen, H. and Iwan, W.D. (1991), "Response variability in structural dynamics", Earthq. Eng. Struct. Dyn., 20, 949-959. https://doi.org/10.1002/eqe.4290201005
- Jensen, H. and Iwan, W.D. (1992), "Response of systems with uncertain parameters to stochastic excitation", J. Eng. Mech., 118, 1012-1025. https://doi.org/10.1061/(ASCE)0733-9399(1992)118:5(1012)
- Kanai, K. (1957), "Semi-empirical formula for the seismic characteristics of the ground motion", Univ. TokyoBull. Earthq. Res. Inst., 35, 309-325.
- Kanapady, R. and Tamma, K.K. (2003), "A-scalability and an integrated computational technology and framework for non-linear structural dynamics. Part 1: Theoretical developments and parallel formulations", Int. J. Num. Meth. Eng., 58, 2265-2293. https://doi.org/10.1002/nme.851
- Kleiber, M. and Hien, H.D. (1992), The Stochastic Finite Element Method: Basic Perturbation Technique and Computer Implementation, John Wiley and Sons, NewYork.
- Li, J. and Chen, J.B. (2005), "Dynamic response and reliability analysis of structures with uncertain parameters", Int. J. Num. Meth. Eng., 62, 289-315. https://doi.org/10.1002/nme.1204
- Li, J. and Chen, J.B. (2009), Stochastic Dynamics of Structures, John Wiley and Sons, Singapore.
- Li, J. and Liao, S.T. (2001), "Response analysis of stochastic parameter structures under non-stationary random excitation", Comp. Mech., 27, 61-68. https://doi.org/10.1007/s004660000214
- Lin, J.H., Shen, W.P. and Williams, F.W. (1997), "Accurate high-speed computation of non-stationary random structural response", Eng. Struct., 19, 586-593. https://doi.org/10.1016/S0141-0296(97)83154-9
- Lin, J.H., Zhao, Y. and Zhang, Y.H. (2001), "Accurate and highly efficient algorithms for structural stationary / non-stationary random responses", Comp. Meth. Appl. Mech. Eng., 191, 103-111. https://doi.org/10.1016/S0045-7825(01)00247-X
- Liu, W.K., Belytschko, T. and Mani, A. (1986), "Probabilistic finite elements for nonlinear structural dynamics", Comp. Meth. Appl. Mech. Eng., 56, 61-81. https://doi.org/10.1016/0045-7825(86)90136-2
- Liu, W.K., Besterfield, G. and Belytschko, T. (1988), "Transient probabilistic systems", Comp. Meth. Appl. Mech. Eng., 67, 27-54. https://doi.org/10.1016/0045-7825(88)90067-9
- Moler, C. and Loan, C.V. (2003), "Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later", Soc. Ind. Appl. Math. Rev., 45, 3-49.
- Nieuwenhof, B.V. and Coyette, J.P. (2003), "Modal approaches for the stochastic finite element analysis of structures with material and geometric uncertainties", Comp. Meth. Appl. Mech. Eng., 192, 3705-3729. https://doi.org/10.1016/S0045-7825(03)00371-2
- Nowak, A.S. and Collins, K.R. (2000), Reliability of Structures, McGraw-Hill, Washington D.C.
- Papadrakakis, M. and Kotsopulos, A. (1999), "Parallel solution methods for stochastic finite element analysis using Monte Carlo simulation", Comp. Meth. Appl. Mech. Eng., 168, 305-320. https://doi.org/10.1016/S0045-7825(98)00147-9
- Priestley, M.B. (1965), "Evolutionary spectral and non-stationary processes", J. Royal Stat. Soc., 27, 204-237.
- Priestley, M.B. (1967), "Power spectral analysis of non-stationary random processes", J. Sound Vib., 6, 86-97. https://doi.org/10.1016/0022-460X(67)90160-5
- Shinozuka, M. (1972), "Monte Carlo solution of structural dynamics", Comput. Struct., 2, 855-874. https://doi.org/10.1016/0045-7949(72)90043-0
- Shioya, R. and Yagawa, G. (2005), "Large-scale parallel finite-element analysis using the internet: a performance study", Int. J. Num. Meth. Eng., 63, 218-230. https://doi.org/10.1002/nme.1277
- Sniady, P., Adamowski R., Kogut, G. and Zielichowski-Haber, W. (2008), "Spectral stochastic analysis of structures with uncertain parameters", Prob. Eng. Mech., 23, 76-83. https://doi.org/10.1016/j.probengmech.2007.10.006
- Su, C., Huang, H., Ma, H.T. and Xu, R. (2014), "Efficient MCS for random vibration of hysteretic systems by an explicit iteration approach", Eathq. Struct., 7, 119-139. https://doi.org/10.12989/eas.2014.7.2.119
- Su, C. and Xu, R. (2010), "Time-domain method for dynamic reliability of structural systems subjected to non-stationary random excitations", Acta Mech. Sinica, 42, 512-520. (in Chinese)
- Su, C., Xu, R., Liu, X.L. and Liao, X.Z. (2011), "Non-stationary seismic analysis of large-span spatial structures by time-domain explicit method", J. Build. Struct., 32, 169-176. (in Chinese)
- Sun, T.C. (1979), "A finite element method for random differential equations with random coefficients", J. Num. Ana., 16, 1019-1035. https://doi.org/10.1137/0716075
- Szekely, G.S. and Schueller, G.I. (2001), "Computational procedure for a fast calculation of eigenvectors and eigenvalues of structures with random properties", Comp. Meth. Appl. Mech. Eng., 191, 799-816. https://doi.org/10.1016/S0045-7825(01)00290-0
- Wall, F.J. and Bucher, C.G. (1987), "Sensitivity of expected exceedance rate of SDOF-system response to statistical uncertainties of loading and system parameters", Prob. Eng. Mech., 2, 138-146. https://doi.org/10.1016/0266-8920(87)90004-X
- Wang, F.Y., Zhao, Y. and Lin, J.H. (2010), "Stochastic response analysis of structures with random properties subject to stationary random excitation", Proceedings of the Earth and Space 2010: Engineering, Science, Construction, and Operation in Challenging Environments, Honolulu, Hawaii, United States.
- Zhao, L. and Chen, Q. (1998), "The stochastic method of weighted residuals for predicting dynamic response of random structure under stochastic excitation", Commun. Num. Meth. Eng., 14, 419-427. https://doi.org/10.1002/(SICI)1099-0887(199805)14:5<419::AID-CNM160>3.0.CO;2-Y
- Zhao, L. and Chen, Q. (2000), "Neumann dynamic stochastic finite element method of vibration for structures with stochastic parameters to random excitation", Compos. Struct., 77, 651-657. https://doi.org/10.1016/S0045-7949(00)00019-5
- Zhong, W.X. (2004), "On precise integration method", J. Comput. Appl. Math., 163, 59-78. https://doi.org/10.1016/j.cam.2003.08.053
- Zhu, W.Q. and Wu, W.Q. (1991), "A stochastic finite element method for real eigenvalue problems", Prob. Eng. Mech., 6, 228-232. https://doi.org/10.1016/0266-8920(91)90014-U
Cited by
- Relative sensitivity analysis of responses using transmissibility vol.410, 2017, https://doi.org/10.1016/j.jsv.2017.08.031
- Arc-length and explicit methods for static analysis of prestressed concrete members vol.18, pp.1, 2016, https://doi.org/10.12989/cac.2016.18.1.017
- Fast Equivalent Linearization Method for Nonlinear Structures under Nonstationary Random Excitations vol.142, pp.8, 2016, https://doi.org/10.1061/(ASCE)EM.1943-7889.0001094
- An explicit time-domain approach for sensitivity analysis of non-stationary random vibration problems vol.382, 2016, https://doi.org/10.1016/j.jsv.2016.06.034
- A modified response spectrum method based on uniform probability spectrum pp.1573-1456, 2019, https://doi.org/10.1007/s10518-018-0485-7
- Inelastic response analysis of bridges subjected to non-stationary seismic excitations by efficient MCS based on explicit time-domain method pp.1573-269X, 2018, https://doi.org/10.1007/s11071-018-4477-6
- Reliability Based Structural Topology Optimization Considering Non-stationary Stochastic Excitations vol.22, pp.3, 2018, https://doi.org/10.1007/s12205-018-0012-z
- Assessments of dissipative structure-dependent integration methods vol.62, pp.2, 2014, https://doi.org/10.12989/sem.2017.62.2.151
- An equivalent linearization method for nonlinear systems under nonstationary random excitations using orthogonal functions vol.66, pp.1, 2014, https://doi.org/10.12989/sem.2018.66.1.139
- Fast Convolution Integration-Based Nonstationary Response Analysis of Linear and Nonlinear Structures with Nonproportional Damping vol.145, pp.8, 2014, https://doi.org/10.1061/(asce)em.1943-7889.0001633
- A novel model order reduction scheme for fast and accurate material nonlinear analyses of large-scale engineering structures vol.193, pp.None, 2014, https://doi.org/10.1016/j.engstruct.2019.04.036
- Stochastic transient analysis of thermal stresses in solids by explicit time-domain method vol.9, pp.5, 2014, https://doi.org/10.1016/j.taml.2019.05.007
- Stochastic sensitivity analysis of energy-dissipating structures with nonlinear viscous dampers by efficient equivalent linearization technique based on explicit time-domain method vol.61, pp.None, 2020, https://doi.org/10.1016/j.probengmech.2020.103080
- A dissipative family of eigen-based integration methods for nonlinear dynamic analysis vol.75, pp.5, 2014, https://doi.org/10.12989/sem.2020.75.5.541
- Explicit Time-Domain Approach for Random Vibration Analysis of Jacket Platforms Subjected to Wave Loads vol.8, pp.12, 2020, https://doi.org/10.3390/jmse8121001
- An iterative equivalent linearization approach for stochastic sensitivity analysis of hysteretic systems under seismic excitations based on explicit time-domain method vol.242, pp.None, 2014, https://doi.org/10.1016/j.compstruc.2020.106396
- 랜덤진동에서 군용 항공기 외부연료탱크 및 파일런 구조 강건성 평가 vol.22, pp.3, 2021, https://doi.org/10.5762/kais.2021.22.3.777
- The higher-order analysis method of statistics analysis for response of linear structure under stationary non-Gaussian excitation vol.166, pp.None, 2022, https://doi.org/10.1016/j.ymssp.2021.108430
- Spectral decomposition-based explicit integration method for fully non-stationary seismic responses of large-scale structures vol.168, pp.None, 2014, https://doi.org/10.1016/j.ymssp.2021.108735