• Title/Summary/Keyword: stochastic structures

Search Result 356, Processing Time 0.022 seconds

Stochastic optimal control of coupled structures

  • Ying, Z.G.;Ni, Y.Q.;Ko, J.M.
    • Structural Engineering and Mechanics
    • /
    • v.15 no.6
    • /
    • pp.669-683
    • /
    • 2003
  • The stochastic optimal nonlinear control of coupled adjacent building structures is studied based on the stochastic dynamical programming principle and the stochastic averaging method. The coupled structures with control devices under random seismic excitation are first condensed to form a reduced-order structural model for the control analysis. The stochastic averaging method is applied to the reduced model to yield stochastic differential equations for structural modal energies as controlled diffusion processes. Then a dynamical programming equation for the energy processes is established based on the stochastic dynamical programming principle, and solved to determine the optimal nonlinear control law. The seismic response mitigation of the coupled structures is achieved through the structural energy control and the dimension of the optimal control problem is reduced. The seismic excitation spectrum is taken into account according to the stochastic dynamical programming principle. Finally, the nonlinear controlled structural response is predicted by using the stochastic averaging method and compared with the uncontrolled structural response to evaluate the control efficacy. Numerical results are given to demonstrate the response mitigation capabilities of the proposed stochastic optimal control method for coupled adjacent building structures.

Spectral SFEM analysis of structures with stochastic parameters under stochastic excitation

  • Galal, O.H.;El-Tahan, W.;El-Tawil, M.A.;Mahmoud, A.A.
    • Structural Engineering and Mechanics
    • /
    • v.28 no.3
    • /
    • pp.281-294
    • /
    • 2008
  • In this paper, linear elastic isotropic structures under the effects of both stochastic operators and stochastic excitations are studied. The analysis utilizes the spectral stochastic finite elements (SSFEM) with its two main expansions namely; Neumann and Homogeneous Chaos expansions. The random excitation and the random operator fields are assumed to be second order stochastic processes. The formulations are obtained for the system solution of the two dimensional problems of plane strain and plate bending structures under stochastic loading and relevant rigidity using the previously mentioned expansions. Two finite element programs were developed to incorporate such formulations. Two illustrative examples are introduced: the first is a reinforced concrete culvert with stochastic rigidity subjected to a stochastic load where the culvert is modeled as plane strain problem. The second example is a simply supported square reinforced concrete slab subjected to out of plane loading in which the slab flexural rigidity and the applied load are considered stochastic. In each of the two examples, the first two statistical moments of displacement are evaluated using both expansions. The probability density function of the structure response of each problem is obtained using Homogeneous Chaos expansion.

Stochastic structures of world's death counts after World War II

  • Lee, Jae J.
    • Communications for Statistical Applications and Methods
    • /
    • v.29 no.3
    • /
    • pp.353-371
    • /
    • 2022
  • This paper analyzes death counts after World War II of several countries to identify and to compare their stochastic structures. The stochastic structures that this paper entertains are three structural time series models, a local level with a random walk model, a fixed local linear trend model and a local linear trend model. The structural time series models assume that a time series can be formulated directly with the unobserved components such as trend, slope, seasonal, cycle and daily effect. Random effect of each unobserved component is characterized by its own stochastic structure and a distribution of its irregular component. The structural time series models use the Kalman filter to estimate unknown parameters of a stochastic model, to predict future data, and to do filtering data. This paper identifies the best-fitted stochastic model for three types of death counts (Female, Male and Total) of each country. Two diagnostic procedures are used to check the validity of fitted models. Three criteria, AIC, BIC and SSPE are used to select the best-fitted valid stochastic model for each type of death counts of each country.

On eigenvalue problem of bar structures with stochastic spatial stiffness variations

  • Rozycki, B.;Zembaty, Z.
    • Structural Engineering and Mechanics
    • /
    • v.39 no.4
    • /
    • pp.541-558
    • /
    • 2011
  • This paper presents an analysis of stochastic eigenvalue problem of plane bar structures. Particular attention is paid to the effect of spatial variations of the flexural properties of the structure on the first four eigenvalues. The problem of spatial variations of the structure properties and their effect on the first four eigenvalues is analyzed in detail. The stochastic eigenvalue problem was solved independently by stochastic finite element method (stochastic FEM) and Monte Carlo techniques. It was revealed that the spatial variations of the structural parameters along the structure may substantially affect the eigenvalues with quite wide gap between the two extreme cases of zero- and full-correlation. This is particularly evident for the multi-segment structures for which technology may dictate natural bounds of zero- and full-correlation cases.

Developing A Stochastical Dynamic Analysis Technique for Structures Using Direct Integration Methods (직접적분법과 확률론적 유한요소법을 이용한 구조물의 확률론적 동적 해석)

  • 이정재
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.36 no.1
    • /
    • pp.54-62
    • /
    • 1994
  • The expanding technique of the Stochastic Finite Element Method(SFEM) is proposed in this paper for adapting direct integration methods in stochastical dynamic analysis of structures. Grafting the direct integration methods and the SFEM together, one can deal with nonlinear structures and nonstationary process problems without any restriction. The stochastical central diffrence and stochastic Houbolt methods are introduced to show the expanding technique, and their adaptabilities are discussed. Results computed by the proposed method (the Stochastic Finite Element Method in Dynamics: SFEMD) for two degree-of-free- dom system are compared with those obtained by Monte Carlo Simulation.

  • PDF

Nonlinear stochastic optimal control strategy of hysteretic structures

  • Li, Jie;Peng, Yong-Bo;Chen, Jian-Bing
    • Structural Engineering and Mechanics
    • /
    • v.38 no.1
    • /
    • pp.39-63
    • /
    • 2011
  • Referring to the formulation of physical stochastic optimal control of structures and the scheme of optimal polynomial control, a nonlinear stochastic optimal control strategy is developed for a class of structural systems with hysteretic behaviors in the present paper. This control strategy provides an amenable approach to the classical stochastic optimal control strategies, bypasses the dilemma involved in It$\hat{o}$-type stochastic differential equations and is applicable to the dynamical systems driven by practical non-stationary and non-white random excitations, such as earthquake ground motions, strong winds and sea waves. The newly developed generalized optimal control policy is integrated in the nonlinear stochastic optimal control scheme so as to logically distribute the controllers and design their parameters associated with control gains. For illustrative purposes, the stochastic optimal controls of two base-excited multi-degree-of-freedom structural systems with hysteretic behavior in Clough bilinear model and Bouc-Wen differential model, respectively, are investigated. Numerical results reveal that a linear control with the 1st-order controller suffices even for the hysteretic structural systems when a control criterion in exceedance probability performance function for designing the weighting matrices is employed. This is practically meaningful due to the nonlinear controllers which may be associated with dynamical instabilities being saved. It is also noted that using the generalized optimal control policy, the maximum control effectiveness with the few number of control devices can be achieved, allowing for a desirable structural performance. It is remarked, meanwhile, that the response process and energy-dissipation behavior of the hysteretic structures are controlled to a certain extent.

Experimental and analytical studies on stochastic seismic response control of structures with MR dampers

  • Mei, Zhen;Peng, Yongbo;Li, Jie
    • Earthquakes and Structures
    • /
    • v.5 no.4
    • /
    • pp.395-416
    • /
    • 2013
  • The magneto-rheological (MR) damper contributes to the new technology of structural vibration control. Its developments and applications have been paid significant attentions in earthquake engineering in recent years. Due to the shortages, however, inherent in deterministic control schemes where only several observed seismic accelerations are used as the trivial input and in classical stochastic optimal control theory with assumption of white noise process, the derived control policy cannot effectively accommodate the performance of randomly base-excited engineering structures. In this paper, the experimental and analytical studies on stochastic seismic response control of structures with specifically designed MR dampers are carried out. The random ground motion, as the base excitation posing upon the shaking table and the design load used for structural control system, is represented by the physically based stochastic ground motion model. Stochastic response analysis and reliability assessment of the tested structure are performed using the probability density evolution method and the theory of extreme value distribution. It is shown that the seismic response of the controlled structure with MR dampers gain a significant reduction compared with that of the uncontrolled structure, and the structural reliability is obviously strengthened as well.

Stochastic control approach to reliability of elasto-plastic structures

  • Au, Siu-Kui
    • Structural Engineering and Mechanics
    • /
    • v.32 no.1
    • /
    • pp.21-36
    • /
    • 2009
  • An importance sampling method is presented for computing the first passage probability of elasto-plastic structures under stochastic excitations. The importance sampling distribution corresponds to shifting the mean of the excitation to an 'adapted' stochastic process whose future is determined based on information only up to the present. A stochastic control approach is adopted for designing the adapted process. The optimal control law is determined by a control potential, which satisfies the Bellman's equation, a nonlinear partial differential equation on the response state-space. Numerical results for a single-degree-of freedom elasto-plastic structure shows that the proposed method leads to significant improvement in variance reduction over importance sampling using design points reported recently.

Stochastic finite element analysis of structural systems with partially restrained connections subjected to seismic loads

  • Cavdar, Ozlem;Bayraktar, Alemdar;Cavdar, Ahmet;Kartal, Murat Emre
    • Steel and Composite Structures
    • /
    • v.9 no.6
    • /
    • pp.499-518
    • /
    • 2009
  • The present paper investigates the stochastic seismic responses of steel structure systems with Partially Restrained (PR) connections by using Perturbation based Stochastic Finite Element (PSFEM) method. A stiffness matrix formulation of steel systems with PR connections and PSFEM and MCS formulations of structural systems are given. Based on the formulations, a computer program in FORTRAN language has been developed, and stochastic seismic analyses of steel frame and bridge systems have been performed for different types of connections. The connection parameters, material and geometrical properties are assumed to be random variables in the analyses. The Kocaeli earthquake occurred in 1999 is considered as a ground motion. The connection parameters, material and geometrical properties are considered to be random variables. The efficiency and accuracy of the proposed SFEM algorithm are validated by comparison with results of Monte Carlo simulation (MCS) method.

A comparative study on the subspace based system identification techniques applied on civil engineering structures

  • Bakir, Pelin Gundes;Alkan, Serhat;Eksioglu, Ender Mete
    • Smart Structures and Systems
    • /
    • v.7 no.2
    • /
    • pp.153-167
    • /
    • 2011
  • The Subspace based System Identification Techniques (SSIT) have been very popular within the research circles in the last decade due to their proven superiority over the other existing system identification techniques. For operational (output only) modal analysis, the stochastic SSIT and for operational modal analysis in the presence of exogenous inputs, the combined deterministic stochastic SSIT have been used in the literature. This study compares the application of the two alternative techniques on a typical school building in Istanbul using 100 Monte Carlo simulations. The study clearly shows that the combined deterministic stochastic SSIT performs superior to the stochastic SSIT when the techniques are applied on noisy data from low to mid rise stiff structures.