• 제목/요약/키워드: random algorithm

검색결과 1,806건 처리시간 0.043초

GPU 컴퓨팅에 의한 고속 Double Random Phase Encoding (Fast Double Random Phase Encoding by Using Graphics Processing Unit)

  • 사이플라흐;문인규
    • 한국멀티미디어학회:학술대회논문집
    • /
    • 한국멀티미디어학회 2012년도 춘계학술발표대회논문집
    • /
    • pp.343-344
    • /
    • 2012
  • With the increase of sensitive data and their secure transmission and storage, the use of encryption techniques has become widespread. The performance of encoding majorly depends on the computational time, so a system with less computational time suits more appropriate as compared to its contrary part. Double Random Phase Encoding (DRPE) is an algorithm with many sub functions which consumes more time when executed serially; the computation time can be significantly reduced by implementing important functions in a parallel fashion on Graphics Processing Unit (GPU). Computing convolution using Fast Fourier transform in DRPE is the most important part of the algorithm and it is shown in the paper that by performing this portion in GPU reduced the execution time of the process by substantial amount and can be compared with MATALB for performance analysis. NVIDIA graphic card GeForce 310 is used with CUDA C as a programming language.

  • PDF

Bayesian Parameter Estimation using the MCMC method for the Mean Change Model of Multivariate Normal Random Variates

  • Oh, Mi-Ra;Kim, Eoi-Lyoung;Sim, Jung-Wook;Son, Young-Sook
    • Communications for Statistical Applications and Methods
    • /
    • 제11권1호
    • /
    • pp.79-91
    • /
    • 2004
  • In this thesis, Bayesian parameter estimation procedure is discussed for the mean change model of multivariate normal random variates under the assumption of noninformative priors for all the parameters. Parameters are estimated by Gibbs sampling method. In Gibbs sampler, the change point parameter is generated by Metropolis-Hastings algorithm. We apply our methodology to numerical data to examine it.

추계적 생산시스템의 최적 설계를 위한 전자 알고리즘을 애용한 시뮬레이션 최적화 기법 개발 (Simulation Optimization for Optimal at Design of Stochastic Manufacturing System Using Genetic Algorithm)

  • 이영해;유지용;정찬석
    • 한국시뮬레이션학회논문지
    • /
    • 제9권1호
    • /
    • pp.93-108
    • /
    • 2000
  • The stochastic manufacturing system has one or more random variables as inputs that lead to random outputs. Since the outputs are random, they can be considered only as estimates of the true characteristics of the system. These estimates could greatly differ from the corresponding real characteristics for the system. Multiple replications are necessary to get reliable information on the system and output data should be analyzed to get optimal solution. It requires too much computation time practically, In this paper a GA method, named Stochastic Genetic Algorithm(SGA) is proposed and tested to find the optimal solution fast and efficiently by reducing the number of replications.

  • PDF

Improved Contrast for Threshold Random-grid-based Visual Cryptography

  • Hu, Hao;Shen, Gang;Fu, Zhengxin;Yu, Bin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권7호
    • /
    • pp.3401-3420
    • /
    • 2018
  • Pixel expansion and contrast are two major performance parameters for visual cryptography scheme (VCS), which is a type of secret image sharing. Random Grid (RG) is an alternative approach to solve the pixel expansion problem. Chen and Tsao proposed the first (k, n) RG-based VCS, and then Guo et al., Wu et al., Shyu, and Yan et al. significantly improved the contrast in recent years. However, the investigations on improving the contrast of threshold RG-based VCS are not sufficient. In this paper, we develop a contrast-improved algorithm for (k, n) RG-based VCS. Theoretical analysis and experimental results demonstrate that the proposed algorithm outperformers the previous threshold algorithms with better visual quality and a higher accuracy of contrast.

Allocation of aircraft under demand by Wets' approach to stochastic programs with simple recourse

  • Sung, Chang-Sup
    • 한국경영과학회지
    • /
    • 제4권1호
    • /
    • pp.59-64
    • /
    • 1979
  • The application of optimization techniques to the planning of industrial, economic, administrative and military activities with random technological coefficients has been extensively studied in the literature. Stochastic (linear) programs with simple recourse essentially model the allocation of scarce resources under uncertainty with linear penalties associated with shortages or surplus. This work on a problem with a discrete random resource vector, "The allocation of aircraft under uncertain demand" given in (1), is easily and efficiently handled by the application of the recently developed Wets' algorithm (8) for solving stochastic programs with simple recourse, which approves that such class of stochastic problems can be solved with the same efficiency as solving linear programs of the same size. It is known that the algorithm is also applicable to stochastic programs with continuous random demands for their approximate solutions.

  • PDF

A Study on Uncertainty Analyses of Monte Carlo Techniques Using Sets of Double Uniform Random Numbers

  • Lee, Dong Kyu;Sin, Soo Mi
    • Architectural research
    • /
    • 제8권2호
    • /
    • pp.27-36
    • /
    • 2006
  • Structural uncertainties are generally modeled using probabilistic approaches in order to quantify uncertainties in behaviors of structures. This uncertainty results from the uncertainties of structural parameters. Monte Carlo methods have been usually carried out for analyses of uncertainty problems where no analytical expression is available for the forward relationship between data and model parameters. In such cases any direct mathematical treatment is impossible, however the forward relation materializes itself as an algorithm allowing data to be calculated for any given model. This study addresses a new method which is utilized as a basis for the uncertainty estimates of structural responses. It applies double uniform random numbers (i.e. DURN technique) to conventional Monte Carlo algorithm. In DURN method, the scenarios of uncertainties are sequentially selected and executed in its simulation. Numerical examples demonstrate the beneficial effect that the technique can increase uncertainty degree of structural properties with maintaining structural stability and safety up to the limit point of a breakdown of structural systems.

Path-smoothing for a robot arm manipulator using a Gaussian process

  • Park, So-Youn;Lee, Ju-Jang
    • 한국산업융합학회 논문집
    • /
    • 제18권4호
    • /
    • pp.191-196
    • /
    • 2015
  • In this paper, we present a path-smoothing algorithm for a robot arm manipulator that finds the path using a joint space-based rapidly-exploring random tree. Unlike other smoothing algorithms which require complex mathematical computation, the proposed path-smoothing algorithm is done using a Gaussian process. To find the optimal hyperparameters of the Gaussian process, we use differential evolution hybridized with opposition-based learning. The simulation result indicates that the Gaussian process whose hyperparameters were optimized by hybrid differential evolution successfully smoothed the path generated by the joint space-based rapidly-exploring random tree.

Earthquake response analysis of series reactor

  • Bai, Changqing;Xu, Qingyu;Zhang, Hongyan
    • Structural Engineering and Mechanics
    • /
    • 제21권6호
    • /
    • pp.621-634
    • /
    • 2005
  • A direct transfer substructure method is presented in this paper for analyzing the dynamic characteristics and the seismic random responses of a series reactor. This method combines the concept of FRF (frequency response function) and the transfer matrix algorithm with the substructure approach. The inner degrees of freedom of each substructure are eliminated in the process of reconstruction and the computation cost is reduced greatly. With the convenient solution procedure, the dynamic characteristics analysis of the structure is valid and efficient. Associated with the pseudo excitation algorithm, the direct transfer substructure method is applied to investigating the seismic random responses of the series reactor. The numerical results demonstrate that the presented method is efficient and practicable in engineering. Finally, a precise time integration method is employed in performing a time-history analysis on the series reactor under El Centro and Taft earthquake waves.

Improvement of ASIFT for Object Matching Based on Optimized Random Sampling

  • Phan, Dung;Kim, Soo Hyung;Na, In Seop
    • International Journal of Contents
    • /
    • 제9권2호
    • /
    • pp.1-7
    • /
    • 2013
  • This paper proposes an efficient matching algorithm based on ASIFT (Affine Scale-Invariant Feature Transform) which is fully invariant to affine transformation. In our approach, we proposed a method of reducing similar measure matching cost and the number of outliers. First, we combined the Manhattan and Chessboard metrics replacing the Euclidean metric by a linear combination for measuring the similarity of keypoints. These two metrics are simple but really efficient. Using our method the computation time for matching step was saved and also the number of correct matches was increased. By applying an Optimized Random Sampling Algorithm (ORSA), we can remove most of the outlier matches to make the result meaningful. This method was experimented on various combinations of affine transform. The experimental result shows that our method is superior to SIFT and ASIFT.

An importance sampling for a function of a multivariate random variable

  • Jae-Yeol Park;Hee-Geon Kang;Sunggon Kim
    • Communications for Statistical Applications and Methods
    • /
    • 제31권1호
    • /
    • pp.65-85
    • /
    • 2024
  • The tail probability of a function of a multivariate random variable is not easy to estimate by the crude Monte Carlo simulation. When the occurrence of the function value over a threshold is rare, the accurate estimation of the corresponding probability requires a huge number of samples. When the explicit form of the cumulative distribution function of each component of the variable is known, the inverse transform likelihood ratio method is directly applicable scheme to estimate the tail probability efficiently. The method is a type of the importance sampling and its efficiency depends on the selection of the importance sampling distribution. When the cumulative distribution of the multivariate random variable is represented by a copula and its marginal distributions, we develop an iterative algorithm to find the optimal importance sampling distribution, and show the convergence of the algorithm. The performance of the proposed scheme is compared with the crude Monte Carlo simulation numerically.