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ABSTRACT 
 

This paper proposes an efficient matching algorithm based on ASIFT (Affine Scale-Invariant Feature Transform) which is fully 
invariant to affine transformation. In our approach, we proposed a method of reducing similar measure matching cost and the 
number of outliers. First, we combined the Manhattan and Chessboard metrics replacing the Euclidean metric by a linear 
combination for measuring the similarity of keypoints. These two metrics are simple but really efficient. Using our method the 
computation time for matching step was saved and also the number of correct matches was increased. By applying an Optimized 
Random Sampling Algorithm (ORSA), we can remove most of the outlier matches to make the result meaningful. This method was 
experimented on various combinations of affine transform. The experimental result shows that our method is superior to SIFT and 
ASIFT.  
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1. INTRODUCTION 
 

 Nowadays, image matching becomes an important issue 
for a large number of computer vision applications: object 
detection [7] and recognition [8], image categorization, image 
retrieval [9], image classification [10], image stitching [11], 
stereo vision [12], [13], 3D modeling [15], etc. One of the 
popular approaches to this problem consists in using local 
features around interest points or regions. The local feature 
should be invariant or robust to various geometrical and scale 
changes. In the state of the art, the Scale Invariant Feature 
Transform (SIFT) feature has been proven to be one of the 
most robust and invariant representation methods. The SIFT 
method, was proposed by David Lowe [2], is a combination of 
the Different of Gaussian region detector that is rotation, 
translation and scale invariant with a descriptor based on the 
gradient orientation distribution in the region, which is partially 
illumination and viewpoint invariant. However, the SIFT 
detector normalizes rotations, translations and simulates all 
zooms out of query images. So, it is only fully scale invariant 
method [3]. After that, an affine-invariant SIFT (ASIFT) [1] is 
proposed being more robust than SIFT. The ASIFT simulates 
all image views obtainable by varying the two camera axis 
orientation parameters, namely, the latitude and the longitude 
angles, left over by the SIFT method. There is a mathematical 
proof in [1] to prove that ASIFT is fully invariant on affine 
transformation. Moreover, by applying a two-resolutions of 
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implementation on matching step, ASIFT computation is 
accelerated and complexity of this algorithm is about twice of 
the complexity of a single SIFT[1]. However, we still face with 
a problem about time complexity, especially on matching step, 
because of the high dimensional feature vector of SIFT and 
ASIFT, 128-dimensional vector. 

 
In order to reduce the complexity time for ASIFT algorithm, 

we used the simple metrics to measure similarity of features 
and then we applied an optimized random sampling algorithm 
to remove outlier matches. That makes the matching step more 
meaningful. In this approach, we combined the Manhattan and 
Chessboard metric on a linear combination for measuring 
distance between two features. These metrics are simpler than 
Euclidean metric, the original metric used in ASIFT algorithm. 
Therefore, computation time is reduced.  

 
Section 2 introduces two robust local features, SIFT and 

ASIFT. The efficient matching is explained in section 3. 
Section 4 explains experimental result that shows our result is 
the best one and time processing is competitive compare with 
the ASIFT and SIFT methods. 
 
 

2. RELATED WORKS 
 
2.1. Scale-invariant feature transform (SIFT) 
The SIFT algorithm is an approach for extracting distinctive 
invariant feature from two images. It is a combination of two

http://dx.doi.org/10.5392/IJoC.2013.9.2.001 



2 In Seop Na : Improvement of ASIFT for Object Matching Based on Optimized Random Sampling 

 

International Journal of Contents, Vol.9, No.2, Jun 2013 

stages: SIFT detector and SIFT descriptor. The SIFT detector is the Difference of Gaussian (DoG) region detector which is 
invariant to rotation, translation and scale [4]. A descriptor 
based on histogram of gradient is used to build the SIFT 
descriptor.  
 

The SIFT algorithm applies four steps for two stages:  SIFT 
detector and SIFT descriptor. 
 
2.1.1. SIFT Detector  
 

2.1.1.1. Scale-space extrema detection: In the first stage, 
interest points called keypoints are identified in the scale-space 
using a cascade filtering approach. The scale of an image is 
defined as a function , , , that is produced from the 
convolution of a variable scale Gaussian, , , , with the 
input image, , : 

 
, , , , ,                         (1) 

 
where * is the convolution operation in x and y 
 
and                  

 , , /                      (2) 
 
where  indicates the standard deviation of the Gaussian 
function, , , . 
 

Using scale-space extrema in the different of Gaussian 
function convolved with the image , , , which can be 
computed from the difference of two nearby scales separated 
by a constant multiplicative factor k: 

 
, , , , , , ,  

                   , , , ,                              (3) 
 

There are a number of reasons for choosing this function. 
First, it is a particularly efficient function to compute, as 
smoothed images, , need to be computed in any case for scale 
space feature description, and  can therefore be computed by 
simple image subtraction. Figure 1 shows an illustration for 
DoG implementation. 

 
In order to detect the local maxima of , , , each 

sample point is compared to 8 neighbors in current image and 
nine neighbors in the scale above and below, see figure 2. If it 
is maximum value, it is a keypoint candidate. 

 
2.1.1.1. Keypoint localization: Once a keypoint candidate 

has been found, the next step is to perform a detailed fit to 
nearby data for location, scale and ratio of principal curvature. 
This information allows points to reject that have low contrast 
or are poorly localized along an edge. Two criteria are used for 
detection of unreliable keypoints. The first criterion evaluates 
value of , ,  at each candidate keypoint. If the value is 
below a threshold, which means that the structure has low 
contrast, the keypoint is removed. The second criterion 
evaluates the ratio of principal curvature along it. Hence, to 
remove unstable edge keypoints based on the second criterion, 

ratio of principal curvatures of each candidate keypoint is 
checked. If the ratio is below a threshold, the keypoint is kept, 
otherwise is removed. 

 

 
Fig. 1. Illustration for different of Gaussian implementation in 

multi-scale [3] 
 
 

 
Fig. 2. Maxima of the difference of Gaussian images are 

detected by comparing a pixel to its 26 neighbors in each 3x3 
region [3] 

 
2.1.2. SIFT Descriptor 
 

2.1.2.1. Orientation assignment: An orientation is 
assigned to each keypoint by building a histogram of gradient 
orientations ,  weighted by the gradient magnitudes 

,  from the key-point’s neighborhood: 
 

, 1, 1, , 1 , 1      (4) 
 

, tanh , 1 , 1 / 1, 1,   (5) 
 

where L is a Gaussian smoothed image with a closest scale to 
that of a keypoint. By assigning a consistent orientation and 
therefore invariance to image rotation is achieved. 
 

2.1.2.2. Keypoint description: Local image gradients are 
measured at selected scale in the region around each keypoint. 
These are transformed into a representation that allows for 
significant levels of local shape distortion and change in 
illumination. 
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proposed affine space sampling. A two-resolution scheme will 
further reduce ASIFT complexity to about twice of SIFT. 
 
ASIFT proceeds by the following steps:  
 

• Step1: This step simulates all possible affine distortion 
of compared image which are caused by the change of camera 
optical axis orientation from a frontal view. These distortion 
depend on two parameters: the longitude  and the latitude . 
The image undergo  rotations followed by tilts | |  , 

which means the convolution by a Gaussian with standard 
deviation √ 1. The value c=0.8 is chosen by Lowe for the 
SIFT method [2]. 
The sampling of the latitude and longitude angles is specified 
below: 

 The latitudes  are sampled so that the associated 
tilts follow a geometric series  1, , , … ,   1. The 
choice √2 is a good compromise between accuracy and 
sparsity. 

 The longitude  are for each tilt an arithmetic 
series 0 , / , … , / ,  5 /12 seems a good 
compromise, and k is an integer such that / . 

 
• Step 2: These rotation and tilts are performed for a 

finite and small number of latitude and longitude angles, 
sampling steps of these parameters ensuring that the simulated 
images keep close to any other possible view generated by 
other value of  and . 

• Step 3: All simulated images are compared by SIFT 
matching [2]. 
 
2.2.3. Acceleration with two resolutions scheme for ASIFT: 

Procedure of two-resolution for ASIFT is applying ASIFT 
algorithm on low resolution and high resolution of compared 
images. As applying ASIFT on the low-resolution first, if there 
exists a match on this matching, the affine transforms will be 
selected. After that it will simulate original image with these 
selected affine transforms. And finally, comparing these 
simulated images. The steps of two-resolution method are as 
follow: 

• Subsample the compared images u and v by a  
factor:  and  where  is an 
antialiasing Gaussian discrete filter and  is the  
subsampling operator. 

• Low-resolution ASIFT: apply the ASIFT algorithm to u’ 
and v’. 

• Identify the M affine transforms which yields the 
largest number of matches between u’ and v’. 

• High-resolution ASIFT: apply the ASIT the u and v 
with simulating only the M affine transforms. 
 

 
 
 
 
 
 
 

3. EFFICENT LOCAL FEATURES MATCHING 
 

In the original ASIFT matching [1], the nearest neighbor 
algorithm was used to find the best candidate match for each 
key-point. The nearest neighbor is defined as the keypoint with 
minimum Euclidean distance. As we know, the ASIFT feature 
vector is 128-dimensional data. So the computational cost is 
very high. In this paper, the Manhattan and chessboard distance 
are proposed to measure the similarity of features instead of the 
Euclidean distance to reduce the computational cost. Then part 
characteristics of 128-dimensional feature vector take part in 
the calculation gradually. By using the proposed metric, the 
outlier margin of matching distances are reduced. Applying the 
same threshold with original method we can obtain a large 
number of matches. Then, applying the Optimized Random 
Sampling algorithm (ORSA) instead of RANSAC, used on the 
original ASIFT, the result achieved more good matches. 
 
3.1. Similarity Measurement 

We can know that computing of Manhattan (8) and 
chessboard distance (9) is simpler than Euclidean distance (7), 
and easily we can verify expression . 
Therefore, we use a linear combination of Manhattan and 
chessboard distance for similarity measurement of features.  
 

∑                             (7) 
 

∑ | |                        (8) 
 

max | |                         (9) 
 

The similarity metric is defined as:  
 

                         (10) 
 

Computing of the new distance was less than computing of 
the original. It’s obvious that we can save the computation time. 
 
3.2. Removing outlier using Optimized Random Sampling 
algorithm (ORSA) 

Fig. 7. Two-resolutions ASIFT illustration: 
Low-resolution ASIFT finds 22 matches in 6s (a), 
High-resolution ASFIT finds 70 matches in 37s (b) 
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The Optimized Random Sampling algorithm is able to 
estimate the epipolar geometry between two images even for a 
very large proportion of outliers. The implementation relies on 
a stochastic algorithm following the Random Sampling 
Consensus (RANSAC) [6]. In the RANSAC algorithm, a 
threshold has to be preset arbitrarily to decide whether a set of 
point matches is compatible with a fundamental matrix F. 

 
The algorithm relies on the idea that on average the 

proportion of outlier should be smaller than p among the most 
meaningful rigid sets. This suggests that the final optimization 
step below should be added at the end of previous Random 
Sampling Algorithm. 

 

 
In practice set  and apply this optimization step to the 
first absolute meaningful set found by random sampling. 
 
 

4. EXPERIEMTAL RESULT 
 

In order to evaluate the proposed method, we have 
experimented on the Morel Yu’s Dataset [17] which includes 
many various simulations of affine transform with the absolute 
tilt and transition tilt. Then we compared the proposed method 
with the original SIFT [2], ASIFT [1]. 

 
According to the below chart [figure 7,8,9], we can see the 

result of SIFT at all of cases was very bad compare with ASIFT 
method and proposed method. Figure 7 shows that ASIFT and 
our method get the good result when comparing the original 
image to the slanted image with absolute tilt and rotation. 
However, our method gave the best result when rotation angle 
is large. In case the image transforms with the transition tilt, the 
proposed method shows the best result at all rotation case. The 
visual matching result in figure 10, 11, 12 shows the contrast of 
our method compare with ASIFT and SIFT. 

Our method not only increases the number of matches but 
also eliminates false matches by using ORSA method. By 
applying a simpler metric, our system saved the time about 10% 
compare with the ASIFT. 
 

 
Fig. 8. Number of matches between the front image and slanted 

images with absolute tilt. 
 

 
Fig. 9. Number of matches between the front image and slanted 

images with transition tilt (t = 2). 
 

 
Fig. 10. Number of matches between the front image and 

slanted images with transition tilt (t = 4). 
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