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Simulation Optimization for Optimal Design of Stochastic
Manufacturing System Using Genetic Algorithm
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Young Hae Lee, Ji Yong Yu, Chan Seok Jeong

Abstract

The stochastic manufacturing system has one or more random variables as inputs that
lead to random outputs. Since the outputs are random, they can be considered only as
estimates of the true characteristics of the system. These estimates could greatly differ from
the corresponding real characteristics for the system. Multiple replications are necessary to
get reliable information on the system and output data should be analyzed to get optimal
solution. It requires too much computation time practically. In this paper a GA method,
named Stochastic Genetic Algorithm(SGA) is proposed and tested to find the optimal
solution fast and efficiently by reducing the number of replications.
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1. Introduction

Most approaches for optimization of system
attempt to determine the values for variable of
probabilistic
components in the system. But many systems
have stochastic nature. The system that has
this characteristics is called a
system. Because most manufacturing systems
there may exit

system  without  considering

stochastic

are modeled stochastically,
difficulties in optimizing them. The objective
functions of the complicated stochastic systems
camnot be expressed analytically and it is
impossible to be optimized by the -classical
mathematical programming techniques. For that
reason, the stochastic system is analyzed and
optimized through simulation.

Computer simulation programs are much
more expensive to run than evaluating
analytical functions. This makes the efficiency
of the optimization algorithm more crucial
When we use simulation methodology to solve
stochastic problems, we have to assign certain
values to system decision variables, run
simulation, analyze the output data, adjust the
design variables, and run the simulation again.
It is a very complicated and time-consuming
task.

Solving the problem of reducing the number
of replications is an essential part for this
research. Since GA tends to generate the same
chromosome special
database to record information of chromosome
is considered in SGA method and the number
of replications can be reduced by pruning the

more than once, a

same chromosomes which exist in database of
past generations. A new method named SGA
could find the optimal solution fast and

efficientty by reducing the number of

replications and the computation time.

2. Literature review

stochastic
optimization problems can be classified. One of

There are several ways
these ways is classification by number of
solutions. For the case of the infinite number
of solutions,
methods including perturbation analysis, the
likelihood
experimentation and the importance sampling
method, etc.. For the case of the finite number
ranking and the
selection methods and the multiple comparisons

with the best, etc..

there are the gradient-based

ratio method, frequency domain

of solutions, there are

2.1 Gradient Based Search Methods

Classical stochastic optimization algorithms

are iterative schemes based on gradient
estimation. The methods estimate the response
function gradient(Vv{)
the objective function and employ deterministic
mathematical programming techniques.

Proposed in the early 1950s, Robbins-Monro
and Kiefer-Wolfowitz are the two most
commonly used algorithms for an
unconstrained stochastic optimization. These
algorithms converge extremely slowly when
the objective function is flat and often diverge
when the objective function is steep. Additional
difficulties include absence of good stopping
rules and handling constraints.

More recently, Andradottir[l] proposed a
optimization algorithm that
converges under more general assumptions

to assess the shape of

stochastic



FAN MotAlARe 21X MAIE St X dD2/EE o285 AlgolM s Iy Y %b

than these classical algorithms. Leung and
Suri[12] reported better with the
Robbins-Monro algorithm when applied in a
finite-time single-run optimization algorithm
than when applied in a conventional wayl[3].

In the stochastic counterpart method (also
known as optimization) a
relatively large sample is generated and the
expected value function is approximated by the
corresponding function[45]. The
average function is then optimized by using a
deterministic non-linear programming (LP)
method. This allows statistical inference to be
incorporated into the optimization algorithm
which addresses most of the difficulties in
stochastic  optimization and increases the
efficiency of the method[3].

results

sample path

average

2.2 Importance Sampling Methods

The importance sampling has been used
effectively to achieve significant speed ups in
simulations such as
failure in a reliable computer system or ATM

communication network[6]. The basic idea of

involving rare events,

importance sampling is to simulate the system
under a different probability measure (e.g. with
different underlying probability distributions) so
as to increase the probability of typical sample
paths involving the rare event of interest. For
each sample path (observation) during the
simulation, the measure being estimated is
multiplied by a correction factor to obtain an
unbiased estimate of the measure in the
system. The main problem in
importance sampling is to come up with an

original

appropriate change of measure for the rare
event simulation problem at hand.

2.3 Ranking and Selection Methods

Ranking and methods are
frequently employed for practical problems, for
instance, finding the best combination of parts
manufactured on various machines to maximize
productivity, or finding the best location for a
these

selection

new facility to minimize cost. In
optimization problems, some knowledge of the
relationship among the alternatives is available.
These methods have the ability to treat the
optimization problem as a multi-criteria
decision problem. When the decision involves
selecting the best system design, the technique
of indifference-zone ranking may be employed.
When the decision involves selecting a subset
of system designs that contains the best
design, the technique of subset selection may
be employed. In either case, the decisions are
guaranteed to be correct with a pre-specified
probability. Many ranking and
procedures can be found in [7].

selection

2.4 Multiple Comparisons With The Best

If the problem is to select the best of a
finite number of system designs, multiple
comparison with the best (MCB) is an
alternative to ranking and selection. In MCB
about the
performance of all alternatives tested is
provided. Such is critical if the
performance measure of interest is not the sole

procedures  inference relative

inference
criterion for decision making, eg. expected
throughput of a manufacturing system may be
the performance measure of interest but cost

of maintaining the system is also important.
According to Hsu and Nelsonf8], MCB
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combines the two most frequently used ranking
and selection techniques, namely, indifference
zone and subset selection inference. Goldsman
and Nelson[9] devised an MCB procedure for
steady state simulation experiments based on
batching. This MCB procedure
implemented in a single run of each alternative
under consideration, which is important if
restarting simulation experiments is unwieldy

can be

and/or expensive.
2.5 Genetic Algorithm

Heuristic methods discussed below
represent the latest developments in the field
of direct search methods (requiring only
function values) that are frequently used for
simulation  optimization. Many of these
techniques balance exploration with exploitation
thereby resulting in efficient global search
strategies. Frequently used heuristic methods
are  Genetic  Algorithm(GA), Simulated
Annealing(SA) and Tabu Search(TS)[3].

Genetic algorithms were designed by John
Holland[10]. They are
processes based on natural selection, "survival
of the fittest”. Genetic algorithms are designed
to solve problems with large, non-linear, poorly
understood search space which traditional
optimization methods find difficult{11].

A genetic algorithm assigns each candidate
solution (usually encoded as bit strings) in a
population with an associated fitness value
measuring the candidate’s survivability, this
process is called evaluation. And the GA
evolves this population of individual candidates

into a new population using three operators:

randomized search

selection, crossover, and mutation. A GA does

its search through an iterative process. The

process of one generation involved with
selection, crossover and mutation is called one
cycle of iteration. Selection probabilistically
chooses better candidate solutions for a new
generation. Crossover and mutation manipulate
candidate solutions to generate new individuals
for selection to process again[11]. The general
structure of genetic algorithm is described in

Figure 1.

Crossover

Figure 1. The general structure of genetic
algorithm

2.6 General Procedure of Simulation
Optimization

Simulation optimization problem can be
presented as

Min E[f(x)l,xe R" (1)

Here, f(x) is a stochastic response function
of simulation model and is
F(x)=g(x)+e(x). g(x)
function and &(X) is a stochastic function
which has Ele(®)]=0 for all x. &%) is called
as an objective function in equation (1) and

presented

is a deterministic
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S(x) is called as a
Generally, because &(%)
is analyzed by a simulation model.

Simulation optimization can be defined as a
process of finding the best input variable
values among the possibilities without explicitly
evaluating each possibility. The objective of
simulation optimization is to minimize the

response function.
is not obvious , f(*)

resources spent while maximizing the
information obtained in a  simulation
experiment. The general procedure of

simulation optimization is summarized as

follows[3]:

Step 0: Define /() and determine alternative.

Step 1: Repeat simulation execution to get
F(x) values and collect output data.

Step 2: Analyze output data. If output data is
satisfied, go to step 3. If not, go to Step 1.

Step 3 Select the best alternative.

This procedure is illustrated in Figure 2. It
is a difficulty of simulation optimization that
procedure of simulation optimization have to
repeat Step 1 and Step 2. If number of
decision variables are many, It require too
much computation time to be practical.

3. Stochastic Genetic Algorithm

Stochastic Genetic Algorithm(SGA) presented

in this paper is a stochastic optimization
method using GA, simulation and statistics
method. GA is used to search for new

alternative and simulation is used to evaluate
alternative and stochastic method is used to
analyze output data. The structure of SGA is
illustrated in Figure 3.

v

Search Alternative [¥

v

Evaluation Using
Simulation

v

Analyzing Output

Figure 3. The structure of stochastic GA

The GA is used to get the optimal solution.
This algorithm has received
attention regarding their potential as an
optimization technique for complex problems
and has been successfully applied in the area

considerable

of industrial engineering. The indifference
-zone selection approach is used to estimate
the final number of replications to be taken in

order to meet the indifference-zone probability
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requirement.

Many of systems can be analytically
formulated and optimized by various techniques
of mathematical programming. However, there
are so many complicated systems for which
the objective function cannot be analytically
expressed. Because of the complex nature, the
system is evaluated through simulation. The
simulation is used to evaluate chromosomes in
GA.

We could reduce the time consuming effort
on the repetition of simulation experiments
with using a database which has recorded
information of chromosomes.

3.1 Procedure of SGA

The output of simulation of stochastic
system is considered only as estimates of the
true characteristics of a model. We needs
many replications to get reliable information on
a single solution in the stochastic optimization
problem. It require too much computation to be
practical. It is critical to reduce computation.
The new stochastic GA quickly find optimal
alternative as to reduce number of replication.
The procedure of the new stochastic GA is
illustrated in Figure 4.

There are two stage in the procedure of
stochastic GA. In the first stage we make

| Initialization I
v

Crossover I

v

l Mutation |

v

Evaluation

Stage 1

Determine the final
number of replications

Crossover |

[ Mutation I

v

Evaluation

Select the
optimal solutions

Stage 2

Find the optimal solution

Figure 4. The procedure of the new stochastic GA
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initial number of replication of each
chromosome, then use the resulting variance
estimates to determine
replications from each system are necessary
for second stage to reach a decision. It is
similar to statistical procedure for solving
stochastic systems. But it is different in the

aspect of gathering sample data and finding

how many more

optimal solution.

Let n be the initial number of replication.
GA procedure is processed until n is equal to
the number of accumulated replications R. And
the final number of replications N is calculated.
N is the number of replications which an
alternative is  replicated to
statistically. GA procedure is processed again
until the terminal condition is satisfied.
Finally, we select the best solution.

guarantee

3.2 Database for Chromosomes

GA tends to generate the
chromosome more than once. And because we
want to avoid wasting simulation effort on
repeat evaluations, we establish a special
database to record information of chromosome.
The database store two types of chromosomes.
One is the top p% of the current population.
Another is specially managed chromosomes
that are good alternatives. Figure 5 presents
the illustration of the database.

same

in | Ftress 1| FAtness 2 | Fness 3 | Finess4

00101 11100 4
Q0101 11101 5
011111111 3]

Figure 5. The illustration of the database

3.3 Representation of GA

In order to supply GA for stochastic
system, we need to encode decision variables
into a chromosome. According to type of
decision variable, the type of chromosome gene
is selected[12]. How to encode a solution of the
problem into a chromosome is a key issue for
GA. In Holland’'s work, encoding is carried out
many GA
applications, especially for the problems from
industrial engineering world, the simple GA
was difficuit to apply directly because the
binary string is not a natural coding. During
the past 10 years, various non-string encoding
techniques have been created for particular
problems—for example, real number coding for
constrained optimization problems and integer
coding for combinatorial optimization problems.
Choosing an appropriate representation of
candidate solutions to the problem at hand is
the foundation for applying genetic algorithms
to solve real world problems, which conditions
all the subsequent steps of genetic algorithms.
For any application case. it is necessary to
perform analysis carefully to
appropriate representation of solutions together

using binary strings. For

ensure an

with meaningful and problem-specific genetic
operators{12].

One of the basic features of genetic
algorithms is that they work on coding space
and solution alternatively:  genetic
operations work on coding space(chromosomes),

space

while evaluation and selection work on solution
space. Natural selection is the link between
chromosomes and the performance of their
decoded solutions. For the non-string coding
approach, three critical issues which emerged
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concerning with the encoding and decoding
between chromosomes and solutions are the
feasibility of a chromosome, the legality of a
chromosome and the uniqueness of mapping.
Feasibility refers to the phenomenon of
whether a solution decoded from a chromosome
lies in the feasible region of a given problem.
Legality refers to the phenomenon of whether
a chromosome represents a solution to a given
problem. The infeasibility of chromosomes
originates from the nature of the constrained
optimization problem. All methods, conventional
ones or genetic algorithms, must handle the
constraints. For many optimization problems,
the feasible region can be represented as a
system of equalities or inequalities (linear or
nonlinear). The illegality of chromosomes
from the nature of
techniques. For combinatorial

originates encoding
many
optimization problems, problem-specific
encodings are used and such encodings usually
illegal
one-cut-point crossover operation[12]. We need
to consider these problems carefully when
designing, a new non-binary-string coding so

as to build an effective genetic algorithm.

yield to offspring by a simple

3.4 Initialization and Parameters

The intial populations are obtained by
random sampling from the solution space. The
user—-defined parameter § is the smallest
difference in expected performance that is
practically significant to the user. Parameter p
is a percent of population. We specially
manage the top p percent of population to get
optimal alternative and to reduce the number
is the initial

of replications. Parameter n

number of replications. We have to define the
value of J, overall confidence level(l- @), the

value of n and the value of p before running
stochastic GA algorithm.

3.5 Final Number of Replications

The final number of replications to be
taken in order to meet the indifference-zone
probability  requirement is obtained by
Indifference Zone Selection Approach[13]. When
the replication numbers .of
included in the top p percent of population is
n, the number of replication is established. The
procedure to determine the final number of

chromosomes

replication for solution i Ni is as follows:
Step 1. Let k be the number of chromosome
included in top p% of the population. Find 4.
for n, k and a (see the tables in Bechhofer et
al[14]).

Step 2. Let X; be the output from the jth
replication of solution i{. Take sample Xi, Xi,
Xiz,..Xin from each k chromosome of the
population simulated independently. Step 3.
Calculate the sample means and marginal
sample variances such as

1n

X ==YX, . siz:zl:(xﬁ-i)’/(n-n
e

1

n j=1
Step 4. Compute the final
replications for solution i such as

number of

N .= MAX {p ,[(—“—ths') I

*«[]:

integer round-up function.
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N replications for each chromosome

Figure 6 The illustration of the traditional evaluation

3.6 Evaluation

We have to rank chromosomes to select
some of them that are copied for the next
generation. The evaluation of chromosome is
only as estimates of the true
chromosome. In a

considered
characteristics of a
stochastic GA it is not possible to conclusively
rank any population of solution without
multiple replications.

The traditional method is as follows. First,
calculate the replications N that
alternative is  replicated to guarantee
statistically  valid. Second, evaluate the

objective  function S N times a
chromosome. Third, calculate its mean. This
method spends much time. The Figure 6
illustrates the traditional evaluation method.
Genetic Algorithm is an iterative process.
we use this characteristics to reduce the
number of replications. Using information of

number

past generations, the number of replications
can be reduced. The basic idea to reduce the
number of replications is that the chromosomes
included in the top p% of population are stored
and the fitness values of the chromosomes
are reused when those are required.

The process of evaluating the fitness of a
chromosome consists of the following steps
(refer to Figure 7):

Step 1. Convert the chromosomes
gene—-type to its pheno-type.

Step 2. Evaluate the objective function .

Step 3. Convert the value of objective
function into fitness.

Step 4. If the same chromosome is in the
database, calculate the mean of fitness
with fitness of stored chromosome.
Substitute the mean of fitness for
fitness obtained in Step 3.

3.7 Ranking

The Chromosomes are ranked
evaluating the fitness. The proposed procedure
of the ranking is as follows:

Step 1. Sort the chromosomes.

Step 2. Let M is the maximum number of
replications among chromosomes included in
top p% of population and let R is the
replication numbers of chromosome /. Find the
maximum number M = max Ri. If all R for i
= 1, .., k are equal, the procedure is finished.
Step 3. Take (M - Ri) additional evaluations

after
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IChromosome name I | Representation I | Fitness ] I Repaired Fitness(Mean) |
[ Chromosome1 | [ 0010011100 | [2 ] + DB )
[ Chromosome2 || 0010011101 | 3]+ DB O)
[ Chromosome3 | [ oo100111t0 | [4 | + DB )
[ Chromosome4 | [ 0010111100 | [1 ] + DB OO
[ Chromosomes | [ oot1011100 | [10] o)
Representaion | Fitness 1 | Fithess 2 | Fitness 3 | Fitness 4
00100 11100 1 1 1
00100 11101 2 2 2
00100 11110 3 3 3
00101 11100 4
Representaion | Fitness 1 | Fitness 2 | Fitness 3 Fess 4
00100 11100 1 1 1 sl
00100 11101 2 2 2
00100 11110 3 3 3

Figure 7. The illustration of the evaluation

from chromosome i, for { = I, .. , k and go

Step 1.

This method can reduce the calculation
time. But it may not be accurate. Thus, we
use the elitist policy in selection to supplement
the weakness.

3.8 Selection
Chromosomes from the current population

are selected with a given probability and
copies from these individuals are created to

constitute the mating pool. Selection of
individuals is based on their fitness relative to
the current population, ie. the strongest

individual will have a higher probability of
being in the mating pool. Fitness is determined

by the objective function that we wish to
optimize[12].

Roulette wheel selection is
spinning a roulette wheel in which the size of

similar to

the roulette wheel slot for each individual in
the population is allocated in proportion to its
fitness. Thus the individuals with higher
fitness have better chance of being selected
relative to the less fit individuals. However,
roulette wheel selection does not guarantee that
high fitness candidate solutions propagate to
the next generation. This selection method is
less effective because of its high stochastic
error. So we use the elitist selection method to
support roulette wheel selection. The elitist
selection method guarantees a certain number
of high fitness individuals will propagate to the
and decreases stochastic

next generation,
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Current chromosomes

00101 11100
00110 11100
01100 11100

10100 11100
00100 11100

Elitist

Next chromosomes

0010111100
0011011100
01100 11100

00101 11100
0110011160
00100 11100

l 00100 01100 !
0010011101
0010011110

lette wheel
00100 11000 R?ﬁ“i‘g“

0010011101
1010011100
10100 11100

ke

Figure 8. The illustration of the selection

errors. Elitist selection ensures that the best
chromosome is passed onto the new generation
if it is not selected through the process of
roulette wheel selection (refer to Figure 8).

4. Experiments
4.1 Known Function Problem

The following discrete minimization
problem is used as a test battery[15].

Objective Function :
1
Min—_ {6 +106 Y +506—X,) +%, =2, +10x, =X, }+E,

Subject to :
0<x,<31, i=1,23,4.

g, ~N(0,10)

€ is a normal distributed random variable
with zero mean and a standard deviation of 10.
This random variable is added to the objective
function to give stochastic characteristics. The
parameters for SGA are as follows:
- The special managed chromosomes
Top 10 % of the population

- The value of Indifference Zone 8 : 1
- Confidence level( 1- a ) : 9%

- The initial number of replications : 40
- Crossover rate : 08 %

- Mutation rate 01 %

- Population Size : 100

The Table 1 shows the result of the
experiment. We obtained the optimal solution
point (0, 0, 0, 0) and the expected optimal value
was 0.32. The final number of replications is
237. The results according to various standard
deviations are shown in Table 2.

Table 1. The obtained result for the given
problem

Rank | X1

ol
H
Q..

X4 | Replication/Time | Fitness{Mean

2757622025

2 3 0] 1 2 237/25.76

3 2 0] [o] 3 237/25.76 3.305363645
4 1 1 0 1 237/25.76 6.108468007
5 4 0 1 5 237/25.76 6.737129675
2] (<] 0 1 4] 237/25.76 7.963941507
7 4 (0] 0 5 237/25.76 8.474482719
8 7 4] 1 7 237/25.76 14.2071865
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Table 2. The results according to various
standard deviations

Table 3. Distance between stations

Computer with Pentium celeron 333 (64M
RAM) was used for the experiment and the
time consumption was 25.76 second, which is
better than the traditional GA method (32.56
second). Even though the traditional GA
method computed similar fitness values, it
required longer computation time because of
replications  for

the larger number of

simulation.
4.2 Manufacturing System

We now apply SGA to a manufacturing
system[13]. A company is going to build a
new manufacturing facility consisting of an
input/output (or receiving/shipping) station and
five work stations as shown in Figure 9. The
machines in a particular station are identical,
but the machines in different stations are
dissimilar. One of the goals is to determine
the number of machines needed in each work
station. It has been decided that the distances
between the six stations will be as shown in
Table 3 (the input/output station is numbered
6).

Station 1 2 3 4 5 6
gég?stil)‘g 1 10 50 100 1000 1 0 150 213 336 300 150
2 150 0 150 300 336 213
optimal
sglution 0,0,0011,01,1|00,1,111,0,0,1]1,0,1,2 3 213 150 0 150 213 150
expected 4 336 300 150 0 150 213
optimal 018 | 1.27 | 1.35 | 0.19 | 173
value 5 300 336 213 150 0 150
6 150 213 150 213 150 Q

Work station 2 Work station 3 Work station 4
| | AEEEN nn
O 0000 0.0
0 0
0
Forkitt tmcw
8
EERE Q L I |
0 0 8 0 0
I Out 0
Work station 1 Receiving/ Work station 5
shipping

Figure 9. Layout of the given
manufacturing system

Assume that jobs arrive at the input/output
station with inter arrival times that are
independent exponential random variables with
a mean of 1/15 hour. There are three types of
jobs, and jobs are of types 1, 2, and 3, with
respective probabilities 0.3, 0.5, and 0.2. Each
job begins at the input/output station, travels
to the work stations on its routing, and then
leaves the system at the input/output station.
The routings for the different job types are
given in Table 4.
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Table 4. Routing for the three job types

Job type Work stations in routing
1 31,25
2 4,1, 3
3 25143

A job must be moved from one station to
another by a forklift truck, which moves at a
constant speed of 5 feet per second. Another
goal of the simulation study is to determine
the number of forklift trucks required. When
a forklift becomes available, it processes
requests by jobs in increasing order of the
distance between the forklift and the requesting
job (i.e, the rule is shortest distance first).
When the forklift finishes moving a job to a
work station, it remains at that station if there

are no pending job requests.

Table 5 Mean service time for each
job type and each operation

Mean service time for successive
Job type

operation(hours)
1 0.25, 0.15, 0.10, 0.30
2 0.15, 0.20, 0.30
3 0.15, 0.10, 0.35, 0.25, 0.20

If a job is brought to a particular work
station and all machines there are already busy
or blocked, the job joins a single FIFO queue
at that station. The time to
operation at a particular machine is a gamma
random variable with a shape parameter of 2,
whose mean depends on the job type and the
work station to which the machine belongs.
The mean service time for each job type and
each operation is given in Table 5. Thus, the

perform an

mean total service time averaged over all jobs
is 0.77 hour.

We simulate the proposed manufacturing
facility to determine how many machines are
needed at each work station and how many
forklift trucks are needed to achieve the
expected throughput of 120 jobs per 8-hour
day, which is the maximum possible. Among
those system designs that can achieve the
desired throughput, the best system design will
be chosen on the
performance such as average time in system,
maximum input queue sizes, proportion of time
each work station is busy, proportion of time
transporters are moving, etc.

For each proposed system design, a
simulation of length 320 hours was made (40
eight-hour days), with the first 64 hours of
each replication being a warmup period. We
also used the method of common random
simulate the various
This guarantees that a particular job
will arrive at the same point in time, be of the
same job type, and have the same sequence of
service-time values for all system designs on
a particular replication. Job characteristics will,
of course, be different on different replications.

basis of measures of

numbers to system

designs.

The objective is to minimize system cost
per unit time. The cost includes machine cost,
queue cost and throughput cost. Machine cost
and queue cost are setup cost, and throughput
cost is operation cost by the unit time. So
objective function can’t contain machine cost
and queue cost directly.

Machine cost and queue cost are modified
to cost of unit time. C. is the cost of ith

machine per unit time. C. is calculated by
machine setup cost per unit time added to
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maintenance cost per unit time. The machine
cost is the sum of all machine costs the as

2nC,

alfi . Cy is the cost of ith queue per unit
time. Ci is calculated as similar as C.. The

total queue cost is n,C,

The system is required to work exactly
objective  throughput. If the  observed
throughput is under or over target throughput,

penalty cost (Crman) is added to system cost.

Objective function is as follows:

min Z.niCﬁnqu*Cmq |nnb,~ N s

al i
where

7, the number of ith machine type

C.: the cost of ith machine per unit time

9 : the total number of queue (stochastic)

C.: the cost of basic structure of queue (per

unit time)

Croav : the cost of penalty for a
underachieving or over-achieving the
target throughput

Ry : the number of objective throughput

M. . the number of observed throughput
(stochastic)

The  detailed
constrains are given as follows:

objective  function and

Min  10000* 77, +11000* 7, +23000* yp, +22000* 1,

+17000* pp, +6000* 5y, +2000*[3840- 57, |

Subject to

1$m, <7, i=12345.

Table 6 shows the result of applying the
proposed method to the given manufacturing
system. The optimal solution is obtained as (6,
3, 6, 3, 3) and the expected optimal value is
525,800.

Table 6. The obtained result for the given
manufacturing system

Rank | n ng n3 n4 ns | Fitness
{Mean)

1 6 3 6 3 3 525800

2 6 4 7 2 4 622500

3 4 5 7 4 7 623300

4 6 6 7 2 4 683800

5. Conclusion

Using simulation optimization methodology
to solve stochastic optimization problem is
time-consuming task with large number of
replications of simulation. Multiple replications
are necessary to get reliable information on the
system and output data should be analyzed to
get optimal solution. It requires too much
computation time practically.

In this paper a GA method, named
Stochastic Genetic  Algorithm (SGA) was
developed and tested to find the optimal
solution fast and efficiently by reducing the
number of replications. Since GA method tends
to generate the same chromosome more than
once, a special database to record information
of chromosome is considered in the developed
method and the computation time can be
reduced by pruning the same chromosomes,
which exist in the generation. The results with
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a known function and a manufacturing
simulation model shows that the developed
method works well for the stochastic

optimization problem.
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