• Title/Summary/Keyword: random 2-normed space

Search Result 7, Processing Time 0.018 seconds

THE GENERAL SOLUTION AND APPROXIMATIONS OF A DECIC TYPE FUNCTIONAL EQUATION IN VARIOUS NORMED SPACES

  • Arunkumar, Mohan;Bodaghi, Abasalt;Rassias, John Michael;Sathya, Elumalai
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.29 no.2
    • /
    • pp.287-328
    • /
    • 2016
  • In the current work, we define and find the general solution of the decic functional equation g(x + 5y) - 10g(x + 4y) + 45g(x + 3y) - 120g(x + 2y) + 210g(x + y) - 252g(x) + 210g(x - y) - 120g(x - 2y) + 45g(x - 3y) - 10g(x - 4y) + g(x - 5y) = 10!g(y) where 10! = 3628800. We also investigate and establish the generalized Ulam-Hyers stability of this functional equation in Banach spaces, generalized 2-normed spaces and random normed spaces by using direct and fixed point methods.

ON THE STABILITY OF THE QUADRATIC-ADDITIVE FUNCTIONAL EQUATION IN RANDOM NORMED SPACES VIA FIXED POINT METHOD

  • Jin, Sun Sook;Lee, Yang-Hi
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.25 no.2
    • /
    • pp.201-215
    • /
    • 2012
  • In this paper, we prove the stability in random normed spaces via fixed point method for the functional equation $f(x+y+z+w)\;+\;2f(x)\;+\;2f(y)\;+\;2f(z)\;+\;2f(w)\;-\;f(x+y)\;-\;f(x+z)\;-\;f(x+w)\;-\;f(y+z)\;-\;f(y+w)\;-\;f(z+w)=0$.

STABILITY OF QUADRATIC FUNCTIONAL EQUATIONS IN RANDOM NORMED SPACES

  • Schin, Seung Won;Ki, DoHyeong;Chang, JaeWon;Kim, Min June;Park, Choonkil
    • Korean Journal of Mathematics
    • /
    • v.18 no.4
    • /
    • pp.395-407
    • /
    • 2010
  • In this paper, we prove the generalized Hyers-Ulam stability of the following quadratic functional equations $$cf\(\sum_{i=1}^{n}x_i\)+\sum_{j=2}^{n}f\(\sum_{i=1}^{n}x_i-(n+c-1)x_j\)\\=(n+c-1)\(f(x_1)+c\sum_{i=2}^{n}f(x_i)+\sum_{i<j,j=3}^{n}\(\sum_{i=2}^{n-1}f(x_i-x_j\)\),\\Q\(\sum_{i=1}^{n}d_ix_i\)+\sum_{1{\leq}i<j{\leq}n}d_id_jQ(x_i-x_j)=\(\sum_{i=1}^{n}d_i\)\(\sum_{i=1}^{n}d_iQ(x_i)\)$$ in random normed spaces.