References
- T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan 2 (1950), 64-66. https://doi.org/10.2969/jmsj/00210064
- P. W. Cholewa, Remarks on the stability of functional equations, Aequationes Math. 27 (1984),76-86. https://doi.org/10.1007/BF02192660
- Z. Gajda, On stability of additive mappings, Internat. J. Math. & Math. Sci. 114 (20031991), 431-434.
- P. Gavruta, A generalization of the Hyers{Ulam{Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), 431-436. https://doi.org/10.1006/jmaa.1994.1211
- D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. U.S.A. 27 (1941), 222-224. https://doi.org/10.1073/pnas.27.4.222
- S.-S. Jin and Y.-H. Lee, A fixed point approach to the stability of the Cauchy additive and quadratic type functional equation, J. Appl. Math. 2011 (2011), Article ID 817079, 16 pages.
- S.-S. Jin and Y.-H. Lee, A fixed point approach to the stability of the functional equation deriving from quadratic and additive mappings, Far East J. Math. Sci. 58 (2011), 1-20.
- S.-S. Jin and Y.-H. Lee, Fuzzy stability of a functional equation deriving from quadratic and additive mappings, Abstr. Appl. Anal. 2011 (2011), Article ID 534120, 15 pages.
- S.-S. Jin and Y.-H. Lee, Fuzzy stability of a general quadratic functional equation, Adv. Fuzzy Syst. 2011 (2011), Article ID 791695, 9 pages.
- S.-S. Jin and Y.-H. Lee, Fuzzy stability of a mixed type functional equation, Inequal. Appl. 2011, 2011:70. https://doi.org/10.1186/1029-242X-2011-70
- S.-S. Jin and Y.-H. Lee, Fuzzy stability of a quadratic-additive functional equa- tion, Int. J. Math. Math. Sci. 2011 (2011), Article ID 504802, 16 pages.
- S.-M. Jung, On the Hyers-Ulam stability of the functional equations that have the quadratic property, J. Math. Anal. Appl. 222 (1998), 126-137. https://doi.org/10.1006/jmaa.1998.5916
- H.-M. Kim, On the stability problem for a mixed type of quartic and quadratic functional equation, J. Math. Anal. Appl. 324 (2006), 358-372. https://doi.org/10.1016/j.jmaa.2005.11.053
- Y.-H. Lee, On the stability of the monomial functional equation, Bull. Korean Math. Soc. 45 (2008), 397-403. https://doi.org/10.4134/BKMS.2008.45.2.397
- Y.-H. Lee and K. W. Jun, A generalization of the Hyers-Ulam-Rassias stability of Jensen's equation, J. Math. Anal. Appl. 238 (1999), 305-315. https://doi.org/10.1006/jmaa.1999.6546
- Y.-H. Lee and K. W. Jun, A generalization of the Hyers-Ulam-Rassias stability of Pexider equation, J. Math. Anal. Appl. 246 (2000), 627-638. https://doi.org/10.1006/jmaa.2000.6832
- Y.-H. Lee and K. W. Jun, On the stability of approximately additive mappings, Proc. Amer. Math. Soc. 128 (2000), 1361-1369. https://doi.org/10.1090/S0002-9939-99-05156-4
- Y.-H. Lee and S.-M. Jung, Stability of an n-dimensional mixed-type additive and quadratic functional equation in random normed spaces, J. Appl. Math. 2012 (2012), Article ID 547865, 15 pages.
- B. Margolis and J. B. Diaz, A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bull. Amer. Math. Soc. 74 (1968), 305-309. https://doi.org/10.1090/S0002-9904-1968-11933-0
- D. Mihet and V. Radu, On the stability of the additive Cauchy functional equation in random normed spaces, J. Math. Anal. Appl. 343 (2008), 567-572. https://doi.org/10.1016/j.jmaa.2008.01.100
- A. Najati and M. Moghimi, Stability of a functional equation deriving from quadratic and additive functions in quasi-Banach spaces, J. Math. Anal. Appl. 337 (2008), 399-415. https://doi.org/10.1016/j.jmaa.2007.03.104
- V. Radu, The fixed point alternative and the stability of functional equations, Fixed Point Theory 4 (2003), 91-96.
- Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300. https://doi.org/10.1090/S0002-9939-1978-0507327-1
- I.A. Rus, Principles and Applications of Fixed Point Theory, Ed. Dacia, Cluj- Napoca 1979 (in Romanian).
- B. Schweizer and A. Sklar, Probabilistic metric spaces, Elsevier, North Holand, New York, 1983.
- A. N. Serstnev, On the motion of a random normed space, Dokl. Akad. Nauk SSSR 149 (1963), 280-283.
- S.M. Ulam, A Collection of Mathematical Problems, Interscience, New York, 1968, p. 63.
Cited by
- ON THE STABILITY OF THE QUADRATIC-ADDITIVE FUNCTIONAL EQUATION IN RANDOM NORMED SPACES VIA FIXED POINT METHOD vol.25, pp.2, 2012, https://doi.org/10.14403/jcms.2012.25.2.201
- Stability of a Functional Equation Deriving from Quadratic and Additive Functions in Non-Archimedean Normed Spaces vol.2013, 2013, https://doi.org/10.1155/2013/198018
- Hyers-Ulam stability of an n-variable quartic functional equation vol.6, pp.2, 2012, https://doi.org/10.3934/math.2021089