• 제목/요약/키워드: rake angle

검색결과 139건 처리시간 0.023초

2次元 切削時 發생하는 AE에 관한 硏究 (A study on the investigation of AE during orthogonal metal cutting)

  • 강명순;최성주;박현
    • 대한기계학회논문집
    • /
    • 제10권6호
    • /
    • pp.906-915
    • /
    • 1986
  • 본 논문에서는 에너지 법칙(energy principle)에 기초한 AE RMS값과 절삭 파 라미터들 사이의 해석적인 관계를 구하기 위하여 Lee와 Shaffer의 미끄름선장 영역을 변형되는 부피로 가정하여 이론적인 식을 제시하였으며 Al의 2차원 절삭시험을 통하여 이 관계가 절삭과정의 감시에 유용하리라는 것을 확인하였다.

구성인선을 고려한 소형 박판 밀링공구의 설계 (Design of A Small Thin Milling Cutter Considering Built-up Edge)

  • 정경득;고태조;김희술
    • 한국정밀공학회지
    • /
    • 제18권5호
    • /
    • pp.130-136
    • /
    • 2001
  • Generally, a metal slitting saw is plain milling cutter with thickness less than 3/16 inch. This is used for cutting a workpiece that high dimensional accuracy and surface finish is necessary. A small thin milling cutter like a metal slitting saw is useful for machining a narrow groove. In this case, built up edge(BUE) is severe at each tooth and affects the surface integrity of the machined surface and tool wear. It is well known that tool geometry and cutting conditions are decisive factors to remove BUE. In this paper, we optimized the geometry of the milling cutter and selected cutting conditions to remove BUE by the experimental investigation. The experiment was planned with Taguchi method based on the orthogonal array of design factors such as coating, rake angle, number of tooth, cutting speed, feed rate. Response table was obtained from the number of built-up edge generated at tooth. The optimized tool geometry and cutting conditions could be determined through response table. In addition, the relative effect of factors was identified bh the analysis of variance (ANOVA). Finally, coating and cutting speed turned out important factors for BUE.

  • PDF

CHIP생성 및 절삭열 발생기구 해석을 위한 유한요소법 적용에 관한 연구 (A Study on the Applications of Finite Element Techniques to Chip Formation and Cutting Heat Generation Mechanism of Cutting Process)

  • 황준;남궁석
    • 한국정밀공학회지
    • /
    • 제12권9호
    • /
    • pp.148-155
    • /
    • 1995
  • The object of this study is to achieve a gteater understanding of meterial removal process and its mechanism. In this study, some applications of finite element techniques are applied to analyze the chip formation and cutting heat generation mechanism of metal cutting. To know the effect of cutting parameters, simulations employed some independent cutting variables change, such as constitutive deformation laws of workpiece and tool material, frictional coefficients and tool-chip contact interfaces, cutting speed, tool rake angles, depth of cut and this simulations also include large elastic-plastic defor- mation, adiabetic thermal analysis. Under a usual plane strain assumption, quasi-static, thermal-mechanical coupling analysis generate detailed informations about chip formation process and cutting heat generation mechanism Some cutting parameters are affected to cutting force, plastic deformation of chip, shear plane angle, chip thickness and tool-chip contact length and reaction force on tool, cutting temperature and thermal behavior. Several aspects of the metal cutting process predicted by the finite element analysis provide information about tool shape design and optimal cutting conditions.

  • PDF

極性有機物質이 切削機構에 미치는 影響 (Effect of Polar Organic Substance on Cutting Mechanism)

  • 서남섭;양균의
    • 대한기계학회논문집
    • /
    • 제10권1호
    • /
    • pp.131-137
    • /
    • 1986
  • 본 논문에서는 도포하기가 용이한 극성유기물질인 magic ink( $C_{6}$ $H_{5-}$ CH/13+ $C_{6}$ $H_{4}$(C $H_{3}$)$_{2}$+ $C_{4}$ $H_{9}$OH+ $C_{6}$ $H_{12}$ $O_{2}$) 를 Rehbinper 효과가 큰 동에 도포하고, 공구경사각을 변화시켜 매 절삭깊이마다 반복 2차원절삭을 실시하여 절삭기구, 절삭저항의 변화, 전단면의 전단변형율, 전단에너지 및 마찰에너지등의 변화를 상호관련시켜 분석하므로서 절삭성의 향상원인을 규명코저 한다.다.

언양지역(彦陽地域) 양산단층(梁山斷層) 부근(附近) 단열(斷裂)의 기하(幾何) 분석(分析) (The Geometric Analysis of Fractures near the Yangsan Fault in Eonyang Area)

  • 장태우;장천중;김영기
    • 자원환경지질
    • /
    • 제26권2호
    • /
    • pp.227-237
    • /
    • 1993
  • Lineaments in the Kyungsang basin most intensely develop in the East coast domain including the Yangsan fault, which dominantly run in NNE direction. The geometry of small fault population near or along the Yangsan fault represents the dominant strikes of N35E, high angle dips and shallowly plunging rakes with dextral movement sense. Stereographic solution on the Yangsan fault geometry gives the dip of 88SE, the slip direction of 17,024 and the slip rake of 18, which were determined from the strike (N23E) of the fault measured on map, and the average attitude (N35E, 84SE) and fault striation (16, 037) of small fault population considered as Riedel shears. It is judged from the geometry of small fault population to the main Yangsan fault and dragging features of bedding attitude near the fault that the Yangsan fault was produced from dextrally strike-slip movement. The movement of the Yangsan and the adjacent parallel faults is thought to be taken place much later than the other fault sets in the Kyungsang basin. It might occur during the geologic age from Eocence to early Miocene according to the consideration of K-Ar ages of the igneous rocks near the fault. The estimated paleostress state indicates ENE shortening and NNW extension. The displacement of the Yangsan fault in the study area is not constant along the fault but decreases from the south to the north. Taking the northern end of the study area as a separating point the whole extension of the Yangsan fault may be divided into southern and northern segments.

  • PDF

Development of KD-Propeller Series Using a New Blade Section

  • Lee, Jin-Tae;Kim, Moon-Chan;Ahn, Jong-Woo;Kim, Ho-Chung
    • Selected Papers of The Society of Naval Architects of Korea
    • /
    • 제1권1호
    • /
    • pp.76-90
    • /
    • 1993
  • A new propeller series is developed using the newly developed blade section (KH 18 section) which has better cavitation characteristics and higher lift-drag ratio at wade angle-of-attack range than a conventional section. The radial patch distribution of the new series propellers is variable stance they were designed adaptively to a typical wake distribution. Basic geometric particulars of the series propellers. such as chord length, thickness, skew and rake distributions, are determined on the basis of recent full scale propeller geometric data. The series is developed for propellers having 4 blades, and blade area ratios of 0.3, 0.45, 0.6 and 0.75. Mean pitch ratios are varied as 0.5, 0.6, 0.7, 0.95 and 1.1 for each blade area ratio. The new propeller series consists of 20 propellers and is named as the KD(KRISO-DAEWOO)-propeller series. Propeller open-water tests are performed at the towing tank, and cavitation observation tests and fluctuating pressure tests are carried out at the cavitation tunnel of KRISO. $B_{p}-\delta$ curves, which can be used to select the optimum propeller diameter at the preliminary design stage, are derived from a regression analysis of the propeller open-water test results. The KD-cavitation chart is derived from the cavitation observation test results by choosing the local maximum lift coefficient and the local cavitation number as parameters. The cavity extent predicted by the KD-cavitation chart would be more accurate compared to that by an existing cavitation charts, such as the Burrll's cavitation chart, since the former is derived from the cavitation observation test results in a typical ship's wake, while the lather is derived from the test results in a uniform flow.

  • PDF

Cutting simulation을 이용한 End-milling cutter의 모델링 및 제작에 관한 연구 (End-mill Modeling and Manufacturing Methodology via Cutting simulation)

  • 김재현;박수정;김종한;박정환;고태조;김희술
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.456-463
    • /
    • 2005
  • This paper describes a design process of end-milling cutters: solid model of the designed cutter is constructed along with computation of cutter geometry, and the wheel geometry as well as wheel positioning data fur fabricating end-mills with required cutter geometry is calculated. In the process, the main idea is to use the cutting simulation method by which the machined shape of an end-milling cutter is obtained via Boolean operation between a given grinding wheel and a cylindrical workpiece (raw stock). Major design parameters of a cutter such as rake angle, inner radius can be verified by interrogating the section profile of its solid model. We studied relations between various dimensional parameters and proposed an iterative approach to obtain the required geometry of a grinding wheel and the CL data fer machining an end-milling cutter satisfying the design parameters. This research has been implemented on a commercial CAD system by use of the API function programming, and is currently used by a tool maker in Korea. It can eliminate producing a physical prototype during the design stage, and it can be used fur virtual cutting test and analysis as well.

  • PDF

모형 레진 근관에서 수종의 전동 니켈-티타늄 파일에 대한 screw-in effect 비교 (COMPARISON OF SCREW-IN EFFECT FOR SEVERAL NICKEL-TITANIUM ROTARY INSTRUMENTS IN SIMULATED RESIN ROOT CANAL)

  • 하정홍;진명욱;김영경;김성교
    • Restorative Dentistry and Endodontics
    • /
    • 제35권4호
    • /
    • pp.267-272
    • /
    • 2010
  • Screw-in effect는 니켈-티타늄 전동 파일을 사용한 근관형성시 나타나는 현상으로 근관형성을 어렵게 한다. 이 연구의 목적은 다양한 니켈-티타늄 전동 파일들 사이의 screw-in effect를 비교하고자 하는 것이다. 본 연구에서는 여섯 가지의 다른 니켈-티타늄 전동 파일 기구들, 즉, $K3^{TM}$ (SybronEndo, Glendora, CA USA), $M_{two}$(VDW GmbH, Munchen, Germany), 삭제능이 있는 첨단을 가진 것과 삭제능이 없는 첨단을 가진 NRT (Mani Inc., Shioya-gun, Japan), ProFile$^{(R)}$ (Dentsply-Maillefer, Ballaigues, Switzerland), 그리고 ProTaper$^{(R)}$ (Dentsply-Maillefer, Ballaigues, Switzerland)가 사용되었다. 기구가 동일한 경사도와 크기를 가지게 하기 위해, 각 기구는 경사도 0.06, size 20을 선택하였으며, ProTaper$^{(R)}$의 경우에는 이와 유사한 S2를 사용하였다. 각 기구당 10개씩 총 60개의 투명레진 블록의 모조 단일 만곡근관(REF A0177, Dentsply-Maillefer, Ballaiguez, Switzerland)에서, 전동파일의 회전속도는 분당 300회전으로 하고, 단일 pecking 동작이 되게 하여 기구조작을 하였다. 장치를 고안하여 일정한 힘의 pecking 동작을 재현하고 screw-in effect의 힘을 측정하였다. 고안한 장치의 dynamometer가 근관형성 과정동안 screw-in force를 측정하였고, 기록된 data는 고안된 소프트웨어를 이용하여 컴퓨터에 저장되었다. 데이터는 one-way ANOVA로 통계처리를 하였고, Tukey's multiple range test를 사용하여 95% 수준에서 유의성을 검정하였다. ProTaper$^{(R)}$가 가장 큰 screw-in effect를 나타내었다(p < 0.001). $K3^{TM}$$M_{two}$와 ProFile$^{(R)}$ 보다 큰 screw-in effect를 나타내었다(p < 0.001). 그러나 $M_{two}$, NRT와 ProFile$^{(R)}$ 사이에서는 유의한 차이가 나타나지 않았고(p > 0.05), 삭제능이 있는 첨단을 가진 NRT와 삭제능을 가지지 않는 첨단을 가진 NRT 사이에도 유의한 차이를 나타내지 않았다. 이상의 연구결과를 통해 볼 때, 실험에 사용된 수종의 Ni-Ti 전동파일들 사이에서 screw-in effect의 차이가 나타날 것으로 보이며. 특히, Ni-Ti 전동파일의 radial lands와 rake angle이 screw-in effect의 차이를 나타낼 수 있을 것으로 생각된다.

Micro Cutting of Tungsten Carbides with SEM Direct Observation Method

  • jung, Heo-Sung
    • Journal of Mechanical Science and Technology
    • /
    • 제18권5호
    • /
    • pp.770-779
    • /
    • 2004
  • This paper describes the micro cutting of wear resistant tungsten carbides using PCD (Poly-Crystalline Diamond) cutting tools in performance with SEM (Scanning Electron Microscope) direct observation method. Turning experiments were also carried out on this alloy (V50) using a PCD cutting tool. One of the purposes of this study is to describe clearly the cutting mechanism of tungsten carbides and the behavior of WC particles in the deformation zone in orthogonal micro cutting. Other purposes are to achieve a systematic understanding of machining characteristics and the effects of machining parameters on cutting force, machined surface and tool wear rates by the outer turning of this alloy carried out using the PCD cutting tool during these various cutting conditions. A summary of the results are as follows: (1) From the SEM direct observation in cutting the tungsten carbide, WC particles are broken and come into contact with the tool edge directly. This causes tool wear in which portions scrape the tool in a strong manner. (2) There are two chip formation types. One is where the shear angle is comparatively small and the crack of the shear plane becomes wide. The other is a type where the shear angle is above 45 degrees and the crack of the shear plane does not widen. These differences are caused by the stress condition which gives rise to the friction at the shear plane. (3) The thrust cutting forces tend to increase more rapidly than the principal forces, as the depth of cut and the cutting speed are increased preferably in the orthogonal micro cutting. (4) The tool wear on the flank face was larger than that on the rake face in the orthogonal micro cutting. (5) Three components of cutting force in the conventional turning experiments were different in balance from ordinary cutting such as the cutting of steel or cast iron. Those expressed a large value of thrust force, principal force, and feed force. (6) From the viewpoint of high efficient cutting found within this research, a proper cutting speed was 15 m/min and a proper feed rate was 0.1 mm/rev. In this case, it was found that the tool life of a PCD tool was limited to a distance of approximately 230 m. (7) When the depth of cut was 0.1 mm, there was no influence of the feed rate on the feed force. The feed force tended to decrease, as the cutting distance was long, because the tool was worn and the tool edge retreated. (8) The main tool wear of a PCD tool in this research was due to the flank wear within the maximum value of $V_{max}$ being about 260 $\mu\textrm{m}$.