• 제목/요약/키워드: rake angle

검색결과 139건 처리시간 0.028초

기계가공면의 소성 스트레인에 관한 연구

  • 김태영;신형곤;소율영
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1991년도 추계학술대회 논문집
    • /
    • pp.54-58
    • /
    • 1991
  • It is well known that metal cutting leaves a plastically deformed layer in the machined surface. This residual phenomenon affects in various forms the physical properties of machined components such as the fatigue strength, the dimensional instability, microcracks, and the stress corrosion cracking. These physical properties, so called surface integrity, are very important for designing highly stressed and critically loaded components. Typical plastic strains in the machined surface are very difficult to measure, since they are located within a very short distance from the surface and they change very rapidly. There is an alternative way to determine the residual strain in plastically deformed materials by measuring the grain size after a subsequent recrystallization process. Although, this technique has been successfully applied by several researchers to find the plastic zone around notches and cracks in various materials and welding beads, few works have been reported using the recrystallization method to determine the residual strains in machined surface. Therefore, the purpose of this investigation Is to explore the effectiveness of the recrystallization technique in machining applications, and in particular, to find the effect of cutting parameters, i.e., depth of cut and rake angle on the plastic strains.

  • PDF

열처리 및 비 열처리 AISI4140강의 유동응력 물성치를 기초로 하는 해석적 가공 모델 연구 (An analytical Machining models based on Flow Stress Properties for Non-Heat Treated and Heat Treated AISI 4140 Steel)

  • 이태홍
    • 한국생산제조학회지
    • /
    • 제20권4호
    • /
    • pp.419-426
    • /
    • 2011
  • In this study, an experimental and theoretical program were carried out to determine the cutting forces and chip formation at different cutting speeds using a 0.4mm nose radius ceramic insert and -7 rake angle for non heat-treated AISI 4140 (27HRc) and heat-treated AISI 4140 (45 HRc) steel. The results obtained were compared to show the hardness differences between the materials. The secondary deformation zone thicknesses when comparing the two materials show different physical structure but similar size. These results were also discussed in light of the heat treatment and the effects it had on the machining characteristics of the material. In addition, the Oxley Machining Theory was used to predict the cutting forces for these materials and a comparison made. The predicted cutting performances were verified experimentally and showed good agreement with experimental data.

분자정역학 기법을 이용한 초미세 절삭특성에 관한 고찰 (Investigation of ultraprecision machining characteristics by molecular statics simulation method)

  • 정구현;이성창;김대은
    • 한국정밀공학회지
    • /
    • 제14권3호
    • /
    • pp.122-129
    • /
    • 1997
  • Machining technology has emerged to the point of performing atomic-scale fabrication. In tail paper atomic-scale machining characteristics are investigated by using Molecular Statics simulation method. The cutting model used in this work simulates machining with tools such as an AFM. It is shown that built-up edge formation and cutting forces depend on tool tip geometry. Also, the material flow during cutting is shown for various cutting conditions such as depth of cut, rake angle, and edge radius of tool.

  • PDF

Noncoherent CDMA 시스템에서의 적응 배열 안테나 성능 분석 (Performance Analysis of Noncoherent CDMA Systems Using Adaptive Array Antennas)

  • 박재홍;최동민정하송박한규
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1998년도 하계종합학술대회논문집
    • /
    • pp.42-45
    • /
    • 1998
  • Adaptive array antenas have emerged as a useful technique to enhance the cell capacity of mobile communications. In this research, to analyze the noncoherent CDMA systems employing adaptive array antennas, we modeled the transmitting signal of CDMA systems using M-ary orthogonal modulation. And we induced the conditional probability density function about the decision variable, the output of 2D-RAKE receiver and mean symbol error prabability through statistical analysis about MAI(Multiple Access Interference), SI(Self Interference) and Noise. Also, we analyzed the charateristics of adaptive array antenna for noncoherent CDMA systems using M-ary orthogonal modulation according to the distance between the array elements, doppler frequency and AOS(Angle of Spread).

  • PDF

순환유동층 보일러 전열관의 열전달 특성 (Heat Transfer of Smooth and Finned Tubes in A CFBC)

  • 김부현;조형희
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집B
    • /
    • pp.651-655
    • /
    • 2000
  • The objective of present work is to investigate experimentally the characteristics of heat transfer. A fluidized bed combustion has advantages of pollution control, fuel flexibility and excellent heat transfer. The present study investigates fundamental phenomena of bed-to-surface heat transfer in high temperature fluidized beds to improve design of immersed tube surface. The tested operating variables are bed temperature, supeficial velocity, mean size of bed material, and the rake angle of fin. Generally, heat transfer rates between the fluidized bed and immersed finned-tube are much higher than those of a smooth tube. A life time of finned-tube is generally longer than that of smooth tube.

  • PDF

CNC에 의한 SM45C 선삭시 절삭성능 평가 (Assessment of Cutting Performance for SM45C using CNC Lathe)

  • 황경충
    • 한국생산제조학회지
    • /
    • 제7권4호
    • /
    • pp.104-116
    • /
    • 1998
  • This paper provides a review of the performance for SM45C using the CNC lathe. Under the constant cutting area, the tool wear for large feed rate is more than the small feed rate, and the progress goes more rapidly as the cutting speed is increased. This is caused by the friction between the workpiece and the bite. The average cutting force increases as the feedrate increases, and decreases as the cutting speed increases. This is because the effective rake/shear angle becomes smaller as the feedrate becomes larger. The higher is the cutting speed and the aspect ratio (the ratio for depth of cut to feedrate), the lower is the cutting force and the surface roughness. Also, for the optimal selection of the cutting conditions, many experimental graphical data were obtained. That is, the cutting force, the tool life, and the surface roughness were measured and investigated as the depth of cut and the feedrate changed. And the size effect was examined as the depth of the cut varied.

  • PDF

마모를 고려한 드릴 절삭력 모델 (Drilling force model considering tool wear)

  • 최영준;주종남
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.1042-1047
    • /
    • 2001
  • A mechanistic model is developed to predict the thrust force and cutting torque of drilling process including wear. A mechanistic oblique cutting force model is used to develop the drilling force model. The cutting lips are divided into small elements and elemental forces are calculated by multiplying the specific cutting pressure with the elemental chip area. The specific cutting pressure is a function of chip thickness, cutting velocity, rake angle and wear. The total forces are then computed by summing the elemental forces. Measured cutting forces are in good agreement with the simulated cutting forces.

  • PDF

SEM내 미소절삭에 의한 초경합금재의 칩 생성 기구 (Chip Formation of WC-Co on Micro-cutting in SEM)

  • 허성중;김원일
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.604-607
    • /
    • 2003
  • This study investigates the micro-cutting of cemented carbides using PCD(polycrystalline diamond) and PCBN(polycrystalline cubic boron nitride) cutting tools are performed with SEM direct observation method. The purpose of this study is to make clear the cutting mechanism of cemented carbides and the fracture of WC particles at the plastic deformation zone in orthogonal micro-cutting. And also to achieve systematic understanding, the effect of machining parameter on chip formation and machined surface was investigated, including cutting speed. depth of cut and various tool rake angle.

  • PDF

정밀가공면의 소성스트레인 측정을 위한 새로운 기법의 개발 (A New Technique Development for Measuring Plastic Strain of Precision Machined Surface)

  • 김태영;반야풍;문상돈
    • 한국정밀공학회지
    • /
    • 제15권4호
    • /
    • pp.141-147
    • /
    • 1998
  • A plastically deformed layer in the precision machined surface affects in various forms the physical properties of machined components such as the fatigue strength, the dimensional instability, microcracks and the stress corrosion cracking. These physical properties, so called surface integrity, are very important for designing highly stressed and critically loaded components. Typical plastic strains in the precision machined surface are very difficult to measure, since they are located within a very short distance from the surface and they change very rapidly. A new way is suggested to determine the residual strain in plastically deformed materials by analyzing the plastically deformed layer after a subsequent recrystallization process. This investigation is to explore a new technique for measuring plastic strain in machining applications, and in particular, to and the effect of cutting parameters(rake angle, depth of cut, specific cutting energy), on the plastic strains and strain energy.

  • PDF

실험적 방법을 통한 Metal slitting saw의 형상 및 절삭 조건의 최적화 (Optimization of a geometric form and cutting conditions of a metal slitting saw by experimental method)

  • 정경득;고태조;김희술
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 춘계학술대회 논문집
    • /
    • pp.934-938
    • /
    • 2000
  • Built-up edge affects the surface integrity of the machined surface and tool wear. Tool geometry and cutting conditions are very important factors to remove BUE. In this paper, we optimized the geometry of the metal slitting saw .1nd cutting conditions to remove BUE by the experiment. In general, the metal slitting saw is plain milling cutter with thickness less of a 3/16 inch. This is used for cutting workpiece where high dimensional accuracy and surface finish are necessary. The experiment was planned with Taguchi method that is based on the orthogonal array of design factors(coating, rake angle, number of tooth, cutting speed, feed rate). Response table was made by the value of the surface roughness, the optimized tool geometry and cutting conditions through response table could be determined. In addition. the relative effect of factors were identified by the variance analysis. filially. coating and cutting speed turned out important factors.

  • PDF