• Title/Summary/Keyword: railway track settlement

Search Result 114, Processing Time 0.024 seconds

Mapping vertical bridge deformations to track geometry for high-speed railway

  • Gou, Hongye;Ran, Zhiwen;Yang, Longcheng;Bao, Yi;Pu, Qianhui
    • Steel and Composite Structures
    • /
    • v.32 no.4
    • /
    • pp.467-478
    • /
    • 2019
  • Running safety and ride comfort of high speed railway largely depend on the track geometry that is dependent on the bridge deformation. This study presents a theoretical study on mapping the bridge vertical deformations to the change of track geometry. Analytical formulae are derived through the theoretical analysis to quantify the track geometry change, and validated against the finite element analysis and experimental data. Based on the theoretical formulae, parametric studies are conducted to evaluate the effects of key parameters on the track geometry of a high speed railway. The results show that the derived formulae provide reasonable prediction of the track geometry change under various bridge vertical deformations. The rail deflection increases with the magnitude of bridge pier settlement and vertical girder fault. Increasing the stiffness of the fasteners or mortar layer tends to cause a steep rail deformation curve, which is undesired for the running safety and ride comfort of high-speed railway.

Characteristics of Roadbed Behaviors of Concrete Track for High-Speed Railway (고속철도 콘크리트궤도용 흙노반의 거동 특성)

  • Lee Il-Wha;Lee Su-Hyung;Kang Yun-Suk
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.3 s.34
    • /
    • pp.298-304
    • /
    • 2006
  • An active application of concrete track is being expected for the future constructions of Korean railroad. For the successful concrete track construction and design in earthwork areas, the roadbed behavior should be reasonably estimated using the proper analysis method. In this paper, behaviors of concrete track on the reinforced roadbed constructed with the standard stiffness and depth were estimated thorough numerical analyses and field measurements. A three dimensional finite difference method was employed to model the concrete tracks and subground. The settlement and vertical pressures caused by train load were estimated by the numerical method and compared with the field measurement results. The bearing characteristics of roadbed were presented and the proper method for the analysis of concrete track was proposed.

Analysis of Settlement and Stress Characteristics about Influence of Track Parameters on Railroad Roadbed by using GEOTRACK (GEOTRACK을 이용한 궤도변수에 따른 침하 및 응력 특성 분석)

  • Shin, Eun-Chul;Lee, Han-Jin;Kang, Jeong-Gu;Yang, Hee-Saeng
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.395-403
    • /
    • 2007
  • Railroad track consists of relatively simple structures such as rail, sleeper, ballast. Roadbed shares vertical pressure by train load which passed through rail to ballast as base that supports the track. For evaluating stress and displacement of roadbed due to the railroad load is an important role on the track as a basic data for estimation of the durability and design of the roadbed thickness. GEOTRACK program applied multi-layered theory was developed for analyzing railroad track structure. GEOTRACK program is a sort of numerical analysis program which has advantage that can analysis component of track by simple method. In this study, this program was used to preform the numerical analysis by changing track conditions and roadbed conditions such as tie, reinforced roadbed, dynamic wheel load, Resilient modulus and so on. Further detail will be presented on the paper.

  • PDF

Evaluation of Maintenance Quantity and Life Cycle Costs of Railway Track Considering Evolution of Rail Fatigue Damage and Ballast Settlement According to Track Quality Level (궤도 품질수준에 따른 레일 피로 손상과 자갈 침하 진전을 고려한 철도 궤도 보수량 및 수명주기비용 평가)

  • Jun-Hyuck Choi;Seung-Yup Jang;Seung-Won You;Do-Yeop Kim;Hyung-Jo Kim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.4
    • /
    • pp.37-47
    • /
    • 2024
  • This study proposes a track maintenance quantity estimation model that considers evolution of rail fatigue damage and ballast settlement based on actual maintenance data from the Gyeongbu high-speed railway, and revises the existing life cycle cost (LCC) model for railway track. Using this model, maintenance quantities and life cycle costs based on different track quality levels are evaluated and discussed. According to the results, it is confirmed that applying the track maintenance quantity estimation model that accounts for rail fatigue damage and ballast settlement allows us to reasonably estimate maintenance costs close to the actual data. The track quality coefficient significantly influences both rail and ballast maintenance quantities, with ballast maintenance having a greater impact than rail maintenance. Additionally, as train speed increases, both rail and ballast maintenance quantities rise. Moreover, a higher track quality coefficient leads to a steeper increase in maintenance quantities with increasing train speed. Consequently, LCC also exhibits a faster growth rate over time with higher track quality coefficients and faster train speeds, resulting from an increased proportion of maintenance costs.

A Study on Reinforcement Effectiveness for Railway Soft Roadbed through Long-Term Instrumentation on the Field Test (현장부설시험구간에서의 장기계측을 통한 토목섬유 보강효과)

  • Choi Chan-Yong;Lee Jin-Wook
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.734-743
    • /
    • 2005
  • In this study, geotextiles was applied on the selected track-bed, which is relatively economical and efficient way to prevent the problem of mud-pumping and settlement. Field testing sections from Mock-haeng to Dong-ryang in the Chung-La lines in Korea were selected to investigate the state of track and roadbed. And three places were chosen among 1,700 spots where mud-pumping was frequently occurred and maintenance required. At the curved section with radius of 500m between Mock-haeng and Dong-ryang, we divided this testing site into 5 section and 4 different types of geotextile were installed and left the last section with no reinforcement. Total length of the test site was 200m and individual length of each site was 40 m. In order to understand the state and the strength of prepared roadbed, stiffness and physical properties of the roadbed soil were evaluated and analyzed. Also, after the installation, mud-pumping, settlement of elastic or plastic sleeper, failure of track, wheel-loads, lateral force and earth pressures were investigated.

  • PDF

A Study on Settlement Characteristics of Earthwork Subgrade with Lowering the Groundwater in High-speed Railway (지하수위 저하에 따른 고속철도 토공노반 침하특성에 관한 연구)

  • Kim, Young-Ha;Eum, Ki-Young;Han, Sang-Jae;Park, Yong-Gul;Jung, Jae-Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.5
    • /
    • pp.67-74
    • /
    • 2015
  • Unlike the primary consolidation settlement, the settlement of ground water lowering is not considered separately because of relatively small residual settlement. But the allowed residual settlement (30 mm) of the concrete track in the high-speed railway may be exceeded due to unexpected excessive ground water lowering. This study analyzed the effect of the settlement according to the ground water level change using finite element analysis of stress-pore pressure coupling model, and compared the analysis results with the measured data. As a result, the range of elasticity modulus satisfying the allowable settlement was proposed, and it is suggested that settlement due to ground water level changes should be reflected in the design.

A Comparison of Behavior of the Roadbeds of Ballasted & Concrete Track with the Cyclic Loading (자갈궤도와 콘크리트궤도에서의 하중재하에 따른 노반거동 비교)

  • Choi, Chan-Yong;Lee, Sung-Heok;Eum, Ki-Young
    • Journal of the Korean Geosynthetics Society
    • /
    • v.9 no.3
    • /
    • pp.1-8
    • /
    • 2010
  • The track systems installed in Korea railway consist of two types on ballasted track or ballastless track. In this study, it was compared with difference of the behaviors at roadbed with cyclic loading through full scale model test. From the results of model tests, loading distribution ratio of the concrete slab track become more widely distributed than ballasted track, and loading distribution ratio at concrete track was about 30:20:15. The concrete slab track is likely to behavior of the rigid plate, while ballasted track is such as flexible pavement. The vertical stresses of upper roadbed with traffic cyclic loading in concrete track were measured about 30 kPa or less. It was a scene very similar to the results of the field train running test. The vertical stress at concrete track was occurred approximately 4 times smaller than ballasted track. Also, the soil velocities with cyclic loading at the slab track were occurred about 0.3 cm/sec or less, its 8 times smaller than ballasted track.

  • PDF

Effect of the Settlement Reduction to each Geosynthetic Reinforced Pile Supported Embankments Design Condition (토목섬유보강 성토지지말뚝의 설계조건별 침하억제 효과)

  • Lee, Il-Wha;Lee, Sung-Jin;Lee, Su-Hyung;Moon, In-Ho
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.1519-1524
    • /
    • 2009
  • Construction of high-speed concrete track embankments over soft ground needs many of the ground improvement techniques. Drains, surcharge loading, and geosynthetic reinforcement, have all been used to solve the settlement and embankment stability issues associated with construction on soft soils. However, when time constraints are critical to the success of the project, another measures should be considered. Especially, since the design criteria of residual settlement is limited as 30mm for concrete track embankment, it is very difficult to satisfy this allowable settlement by using the former construction method. Pile net method consist of vertical columns that are designed to transfer the load of the embankment through the soft compressible soil layer to a firm foundation and one or more layers of geosynthetic reinforcement placed between the top of the columns and the bottom of the embankment. In this paper, three cases with different embankment height and number of geosynthetic reinforcement, were studied through FEM analysis for efficient use of pile net method.

  • PDF

Track Stability in Accordance with the Depth of Soil above Box Structures Constructed by Non-excavation Method on Railway Embankment (철도하부 비개착공법을 이용한 BOX구조물 설치시 토피고에 따른 궤도구조 안전성에 관한 연구)

  • Jeon, Byeon-Muk;Eum, Ki-Young;Cho, Kook-Hwan
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.412-419
    • /
    • 2011
  • With an increase in rail traffic, developing activities around structures of railway have been expanded. Inevitably, the changes to cross though sub-structures of railway have been getting increased. However, this situation affects on the safe operation of trains. Generated wheel load makes on the result in settlement on roadbed and damages on track materials. Therefore, via the numerical analysis were carried out for the box structure and subground using FEM analysis program called. Visual FEA/Geo 4.19. Parametric studies were performed by changing soil depth above box structure constructed in railway embankment. A standard live load was applied to simulate loads from train. Through this study, a minimum required soil depth above subground box structure was recommended based on deformation and stresses in concrete railway system.

  • PDF

A review on modelling and monitoring of railway ballast

  • Ngamkhanong, Chayut;Kaewunruen, Sakdirat;Baniotopoulos, Charalampos
    • Structural Monitoring and Maintenance
    • /
    • v.4 no.3
    • /
    • pp.195-220
    • /
    • 2017
  • Nowadays, railway system plays a significant role in transportation, conveying cargo, passengers, minerals, grains, and so forth. Railway ballasted track is a conventional railway track as can be seen all over the world. Ballast, located underneath the sleepers, is the most important elements on ballasted track, which has many functions and requires routine maintenance. Ballast needs to be maintained frequently to prevent rail buckling, settlement, misalignment so that ballast has to be modelled accurately. Continuum model was introduced to model granular material and was extended in ballast. However, ballast is a heterogeneous material with highly nonlinear behaviour. Hence, ballast could not be modelled accurately in continuum model due to the discontinuities nature and material degradation of ballast. Discrete element modelling (DEM) is proposed as an alternative approach that provides insight into constitutive model, realistic particle, and contact algorithm between each particle. DEM has been studied in many recent decades. However, there are limitations due to the high computational time and memory consumption, which cause the lack of using in high range. This paper presents a review of recent ballast modelling with benefits and drawbacks. Ballast particles are illustrated either circular, circular crump, spherical, spherical crump, super-quadric, polygonal and polyhedral. Moreover, the gaps and limitations of previous studies are also summarized. The outcome of this study will help the understanding into different ballast modelling and particle. The insight information can be used to improve ballast modelling and monitoring for condition-based track maintenance.